

# **SCANNING PROBES**



- In analogue sensing, a scanning probe is used that is installed on a CMM or CNC machine.
- •When scanning, the probe stylus tip contacts the feature and then moves continuously along the surface, gathering data as it moves.
- •The scanning speed in analogue sensing is up to three times faster than in point-to-point sensing.











A milling machine with scanning probe V SEM- ADDITIVE MANUFACTURING-I UNIT- 2/REVERSE ENGINEERING -K.M.EAZHIL





### **CONTACT – ADVANTAGES & DISADVANTAGES**

#### **Advantages:**

- High accuracy.
- Low costs.
- Ability to measure deep slots and pockets.
- •Insensitivity to color or transparency.

#### **Disadvantages:**

- Slow data collection.
- Distortion of soft objects by the probe.





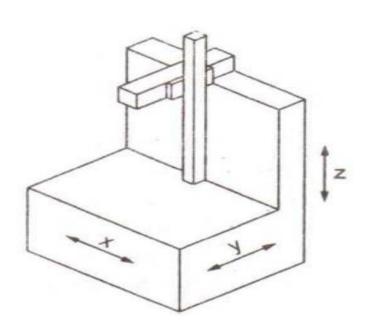
# **COORDINATE MEASURING MACHINE (CMM)**

- A coordinate measuring machine (CMM) is a device that measures the geometry of physical objects by sensing points on the surface of the object with a probe.
- Various types of probes are used in CMMs, including mechanical, optical, laser, and white light.
- Depending on the machine, the probe position may be manually controlled by an operator or it may be computer controlled.





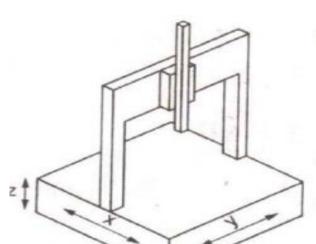
## Types of CMM


- 1. Cantilever Type
- 2. Bridge Type
- 3. Column Type
- 4. Gantry Type
- 5. Horizontal Arm Type





## Cantilever type


- · A vertical probe moves in the z-axis
- · Carried by a cantilevered arm that moves in the y-axis
- This arm also moves laterally through the x-axis
- Advantage- a fixed table allows good accessibility to the work piece
- Disadvantage- the bending caused by the cantileter
  design
- The cantilever design offers a long table with relatively small measuring ranges in the other two axis.
- Suitable for measuring long, thin part

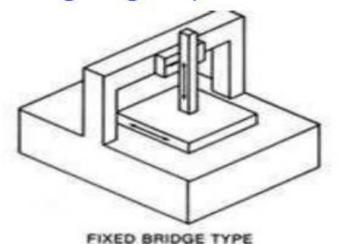






## Moving bridge type




- · Most widely used
- Has stationary table to support work piece to be measured and a moving bridge
- Advantage- reduce bending effect
- Disadvantage- with this design, the phenomenon of yawing (sometimes called walking) can occur- affect the accuracy





# Fixed bridge type

- In the fixed bridge configuration, the bridge is rigidly attached to the machine bed
- This design eliminates the phenomenon of walking and provides high rigidity







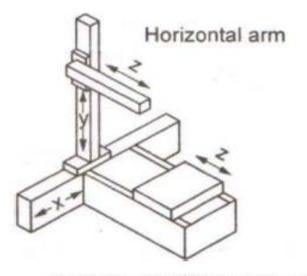
# Column type

Often referred to as universal measuring machine instead of CMM

 The column type CMM construction provides exceptional rigidity and accuracy

C. COLUMN TYPE

· These machines are usually reserved for gauge rooms rather than


inspection







### Horizontal arm type



D. MOVING RAW HORIZONTAL ARM TYPE

- Unlike the previous machines, the basic horizontal arm-type CMM
- · Also referred to as layout machine
- Has a moving arm, and the probe is carried along the y-axis
- Advantage- provides a large area, unobstructed work area
- Ideal configuration for measurement of automobile parts





#### APPLICATIONS

- Co-ordinate measuring machines find applications in automobile, machine tool, electronics, space and many other large companies.
- These machines are best suited for the test and inspection of test equipment, gauges and tools.
- For aircraft & space vehicles, hundred percent inspections is carried out by using CMM.
- CMM can be used for determining dimensional accuracy of the components.
- These are ideal for determination of shape and position, maximum metal condition, linkage of results etc. which cannot do in conventional machines.
- CMM can also be used for sorting tasks to achieve optimum pairing of components within tolerance limits.





#### ADVANTAGES

- The inspection rate is increased.
- · Accuracy is more.
- Operators error can be minimized.
- · Skill requirements of the operator is reduced.
- Reduced inspection fix Turing and maintenance cost.
- Reduction in calculating and recording time.
- Reduction in set up time.
- No need of separate go / no go gauges for each feature.
- Reduction of scrap and good part rejection.
- Reduction in off line analysis time.