UNIT-V

BEARINGS

PART - A

1. How are bearings classified? (Dec 2010 & MAY 2014)

Depending upon the type of contact

- a. Rolling element bearing
- b. Sliding contact bearing

Depending upon the type of rolling element

- a. Ball bearing
- b. Roller bearing
- 2. What is a journal bearing? List any two applications. (Nov 2006, May 2013 & May 2014)

A journal bearing is a sliding contact bearing which gives lateral support to the rotating shaft.

- 3. Classify the sliding contact bearings according to the thickness of layer of the lubricant between the bearing and the journal.(May 2012)
 - a. Thick film type
 - b. Thin film type
 - c. Hydrostatic bearings
 - d. Hydrodynamic bearings
- 4. For a journal bearing, the maximum operating temperature must be less than 80°C. why?(Dec 2010)

Temperature rise will result in the reduction of the viscosity of the oil used in the bearing. It would lead to metal to metal contact therby affecting the bearing performance and life.

5. What is known as self acting bearing? (NOV 2007)

The pressure is created within the system due to rotation of the shaft known as self acting bearing. In hydro dynamic bearing, what are factors which influence the formation of wedge fluid film? (Nov 2014)

- 1. The contact surfaces must meet at a slight angle to allow the formation of the lubricant wedge.
- 2. The fluid viscosity must be high to maintain an adequate film thickness to separate the contacting surfaces at operating speeds.

6. Explain the term dynamic load carrying capacities of rolling contact bearing. (Dec 2012)

The basic dynamic load rating is defined as the constant stationary radial load (in case of radial ball or roller bearings) or constant axial load (in case of thrust ball or roller bearings) which a group of apparently identical bearings with stationary outer ring can endure for a rating life of one million revolutions (which is equivalent to 500 hours of operation at 33.3 r.p.m.) with only 10 per cent failure.

7. What are the types of radial ball bearing? (May 2012)

- 1. Deep groove ball bearing
- 2. Self angular ball bearing
- 3. Angular contact ball bearing
- 4. Filing notch bearing.

8. What is the application of thrust bearing? (Dec 2010)

Thrust bearings are used to support axial loads imposed on the rotaing elements.

9. What is meant by life of anti-friction bearing? (Apr 2008 & May 2013)

For an individual rolling bearing, the number of revolutions which one of the bearing rings makes in relation to the other rings under the prevailing working conditions before the first evidence of fatigue develops in the material of one of the rings or rolling elements.

10. List any four advantages to rolling contact bearings over sliding contact bearings. (Apr 2009)

- 1. Starting friction is low
- 2. Lubrication is simple
- 3. It requires less axial space

11. State the disadvantages of thrust ball bearing. (Apr 2009)

- 1. High initial cost
- 2. Less capacity to withstand shock
- 3. Noisy operation at very high speed.
- 4. Life is finite

12. Define static capacity of bearing. (Nov 2014)

It is defined as load acting on a non rotating bearing under which permanent deformation is 0.0001 times the ball or roller diameter.

13. Explain the term dynamic load carrying capacities of rolling contact bearing. (Nov 2004)

It is defined as the radial load in radial bearings that can be carried for a minimum life of one million revolutions.

14. What are the modes of failure of rolling contact bearing? (Dec 2010)

1. Flaking or surface fatigue, 2. Peeling, 3. Scoring, 4. Fretting, 5. Creep

15. What are anti friction bearings? (April 2017)

Advantage of a rolling contact bearing over a sliding bearing that it has a low starting friction. Due to this low friction offered by rolling contact bearings, these are called antifriction bearings.

UNIT-V

BEARINGS

1. Design a journal bearing for a Centrifugul

Pump from the following data: Load on the

Journal = 20,000N; Speed of the journal = 900r.p.m,

journal = 20,000N; Speed of the journal = 900r.p.m,

Type of oil is SAE 10, for which the absolute

Vigcosity at 55°C = 0.017 kg/m-s; Ambient

Vigcosity at 55°C = 0.017 kg/m-s; Ambient

temperature of oil = 15.5°C; Maximum bearing

temperature of oil required for axtifical

mass of the lubricating oil required for axtifical

cooling, if like of temperature of oil he

Cooling, if like of temperature of oil he

limited to 10°C. Heat dissipation Coefficient

limited to 10°C. Heat dissipation Coefficient

is 1232 W/m²l°C. [Nov/DEC 2013]

GIVEN DATA:

W= 20,000 N; N=900 r.p.m; SAE 10 O'U; z=0.01 kg/ms

to = 55°C; Pmax= p=1.5N/mm²; At=10°C;

K=1232 W/m²/°C.

To FIND: 1) Leighth of Journal, L 3) Mass of Lubricating oil, m 3) Diameter of Bearing, Db.

SOLUTION:

I Length of Journals L:

From DDB P.NO: 7.31 Corresponding to Centrifyed

From DDB P.NO: 7.31 Corresponding to Centrifyed

=1.6×100

Pump L = 1 to 2:

De bake L = 1.6

Assume D=100 mm

II Developed Bearing Presume, P: $P = \frac{W}{L \cdot D} = \frac{20,000}{160 \times 100} = 1.25 \, \text{N/mm}^2$ In DDB. P.No. 7.31 Corresponding to Centrifugal pump, Bearing Pressure, & lies between 7-14 kgf/m that is 0.7 to 1.4 N/mm? Calculated Pressure, >= 1.25 N/mm2 lies in this .. Pressure, P is Safe and dimensions L&D are III Bearing Characteristic Number, ZN: From DDB. P. No. 7.31 Corresponding to Centrifyal Pump $\frac{2N}{b} = 2844.5$ Note: We have to take first two digit from DDB Value .. 2N = 28. $\frac{2N}{1.25} = \frac{0.017 \times 900}{1.25} = 12.24$ Minimum value of Bearing modulus at which oil film will break is given by K=9.33 K=2N | Calculated bearing Characteristic number calculated bearing Characteristic number (12.24 is greater than 9.33.) | 12.24 is greater than 9.33. | 12.24 is greater than 9.33. | Bearing will operate under hydrodynamic by with thick lubrication Condition.

```
Note 1: Clearance Rates for Railway Cars, Steam
Turbines, Fransmession Shapts, machine Tools, punching
and shearing machines is 0.001.
Note 2: Clearance Patie for Generators, motors and
Certifigal pump is 0.0013
Note 3: Clearance vatio for Rolling mills is
  0.0015
W Clearance Ratio, 500
   For Centrifugal pump, = 0.0013
V Heat Generated, Hg:
      Hg= H.V.W
  DDB. P.NO: 7.34
   Mckees Equation
      M = 33.25 (2N) (2) +K.
   From DDB.P.No: 7.34 glaph Corresponding to

L = 160 = 1.6, the value of K is 0.0025
    \therefore \mu = \frac{33.25}{108} \times 12.24 \times \left(\frac{1}{0.0013}\right) + 0.0025
           = 0.0051
       U = Rubbing Velocity.
           = TDN, where diameter in metres
          U=4.71 m/s
```

```
Hg = H.V.W
       = 0.0051 x 4.71 x 20,000
   Hg = 480.7 W
VI Heat discipated, His
      Hd = CxAx (tb-ta)
           = cx LxAx 1 (to-ta)
           =1232 x 0.16 x 0.1 x 1 (55-15.5)
        Hy = 389.3W
 VII Amount of Arceficial Cooling Required:
            =Hg-Hd
             =480.7-389.3
VIII Mass of Lubricating Oil require for
Arcificial Cooling, mo
       S = Specific heat of oil
= 1840 to 2100 J/kg/c
We take, S = 1900 J/kg/°c.
       HE= Hg-Hd = m.s. DE
                91.4 = M x 1900 x 10
                 : m = 0.0048 kg/8
                       = 0.0048 x 60
                    m = 0.288 kg/min
```

IX Diameter of Bearing, Db: D = D+C = 0.13 mm - Diametral Clearance Db = 100+0.13 = 100.13 mm

SPECIFICATIONS:

- 1. Diameter of Journal, D=100mm
- 2. Leight of Journal, L=16 omm
- 3. Diameter of Bearing, Db = 100.13mm
- 4. Diametral Clearance, c = 0.13 mm
- 5. Lubricant = SAE10 Oil
- 6. Operating Temperature, to = 55°c.
- 7. Atmospheric Temperature, ta=15.5°C

2. A Isomm diameter Shapt Supporting a load of loku has a speed of 1500 r.p.m. The shipt ring in a bearing whose length is 1.5 times the Shapt diameter. If the diametral Clearance of the bearing is 0.15 mm and the absolute Viscosity of the oil at the operating temperature is 0.011 kg/m-s. Find the power wasted in friction and increase in the oil temperature. [NOV DEC 2014]

GIEVEN DATA:

D= 1500m, N= 1500r.p.m; C= 0.15mm W= 10 KN = 10×103 No L=1.50; - = =1.5; Z=0.011 kg/m-s.

To FIND: (1) Power lost in friction, Hg.

2) Increase in oil temperature, st

I. Lerette of the Journal, L:

L=1.5 xD = 1.5 x 150 = 225mm

II Coefficient of Frection, M and Rubbing Velocity, V:

P=W= lor000 = 0.296 N/Mm2
225 X150

From DDB. P.NO: 7.34 Corresponding to 5, the Value of k is 0.002.

$$\mu = \frac{33.25}{10^8} \left(\frac{2N}{P} \right) \times \frac{0}{C} + k.$$

$$= \frac{33.25}{10^8} \left(\frac{0.011 \times 1500}{0.294} \right) \times \left(\frac{150}{0.15} \right) + 0.002$$

H = 0.02

V - TIDN - TX0.15 X1500 = 11.78 m/8.

III Heat Generated Due to Friction (Hg): Hg = Power wasted in Friction

-H.V.M = 0.05 × 11.428 × 10 × 103

Hg = 2356W

III Increase in Dil Temperature, At: = CX LXD } (to-ta)

2356 = 1400 × 0.225 × 0.15 × 1 (DE)

Δt = 98°C

3. Select a single row deep gloove trall treating for a radial boad of 4000N and an axial boad of 5000N, o perating at a speed of 1600 Y.p.m of 5000N, o perating at a speed of 1600 Y.p.m for an average life of 5 years at 10 hours per day. Select from series 64. [MAY/JUNE 2013]

GIVEN DATA:

Radial Load, Fr = 4000N Ascial Load, Fa = 5000N N = 1800x.b.w

Average Life = 5 years at hours per day.

To FIND: O Life of Bearing in Revolutions 3 Lynamic Capacity 3 Selection of Bearing.

SOLUTION:

I Life of Bearing in Revolutions, L: LH= Life of bearing in working hours. = Working years x Working days working Hours. = 5 × 300 × 10 LH= 15,000 Rours

$$L = L_{H} \times N \times 60$$

= 15,000 × 1600 × 60
 $L = 1440 \times 10^{6} \text{ rev}$.

I Dynamic Equivalent Load, P.

DDB. P.NO: 4.4

Assome Fa = 0.5; Where C=Static Load Capacity.

In tabulation available in D.DB. P.No: 4.4 Corresponding to deep grove ball bearing and Fa, the value of e is 0.44.

$$\frac{F_a}{F_x} = \frac{5000}{4000} = 1.25$$

Fa >e

1.25 > 0.44

.. In DDB. P.No: 4.4 tabulation Corresponding to deep groove ball bearing & Fa > e, we have to take the value of X' and'y'

X = 0.56 and Y=1

For most of the bearings rotational Service factor, s=1 P=[(0.56×4000)+(1×5000)]X1 =7240N III Dynamic Load Pating (or) Myramic Capacity, C: $C = \left(\frac{L}{L_{10}}\right)^{1/k}$. P. Where Lo-Life of bearing for 90% Survival atimillion revolutions. - One million revolutions. = 106 revolutions K = 3 [For Ball Bearings] C = [1440 × 10 6 /3 × 7240 = 81760N C=8176 Kg

IV Selection of Bearing: DDB. P.NO: 4.6 From glaph Corresponding to 1600 x.p.m in x-2004 and Ly = 15,000 hrs in 4-axis, the Loading Satio = 11.5 C=11.5xP=11.5x7240 =83260N C = 83 26 kg Take highest value of C · C = 83260N =8326kg Standard deep groove ball bearings Specification available in DDB. P.NO: 4.12, 4.13, 4.14 & 4.15 SKF 6412 deep gloove ball bearing having From DBB.P.NO:4.15 C-8450kg may be Selected 4. Select a Svetable Conrad type ball bearing for the following data. The radial load is 7500N and axial load is 4500N. The Shapt Speed is 2000 r.p.m and the Lo life required is 4.9 × 106 revolutions. The inner ring of the bearing rotates. [MAY/JONE 2012] GIVEN DATA: L=4.9×106 revolutions F = 7500N Inner ring rotates. .. V=1 Conrad ball bearing is Deep gloove F_=4500N N = 2000 Y.P.M Ball Bearing!

To FIND: Selection of type of Bearing. SOWTION: I algranic Equivalent Load, P: Let US Select SKF 6318 bearing from For SKF 6318, C=96110N; C=107870N. Fa = 4500 = 0.05 Corresponding value of è' from DDB P.No: 4.4 40.25 Fa = 4500 = 0.6 In DDB. P.NO: 4.4 tabulation Corresponding to deep gloone ball bearing and Fa >e, the value of X'and Y'are 0.56 and 1.74. P = (VXF, +YFa) s = (1x0.56x7500+1.74x4500) P=14436N

I Selection of Bearing:

$$L = \left(\frac{C}{P}\right)^{K} = \left(\frac{107870}{14436}\right)^{3} = 417.2$$
 million revolutions
= 4.17 × 108 rev

SKF 6318 bearing has life 4.17×108 rev. Which is less than the requirement (4.9×108 rev)

". Select next higher Capacity bearing.

SKF 6319 bearing.

C=107870N and C=117680N.

Corresponding Value g e = 0.24

From DDB. P.NO: 4.4, X=0.56 and 7=1.8.

$$L = \left(\frac{C}{P}\right)^{k} = \left(\frac{117680}{14760}\right)^{3} = 506.8 \text{ m.r.}$$

= 5.068 × 108 revolutions

> 4.9×108 revolutions.

.. SKF 6319 ball bearing may be Selected

5: Per	6307	ball	bearing	the	load	Varies as
follow						

	: D			
	Radial Load	Axial Load	G de Time Rates	Speed in r. p.m.
	6000 7500 4000	3000	0.5	400 650 900
ų	The second secon	Market Printers (chief photograph - by property of the party of the pa	Λ .	1

The inner ring rotates, loads are Steady End the expected average life of the bearing

GIVEN DATA:

To FIND: 1 LH = Average Life of Bearing

$$\frac{1}{C_0} = \frac{3000}{17600} = 0.17$$

From DDB. P.NO: 4.4. Corresponding to Deep groove ball bearing the value of e is 0.33

. From DDB. P.No: 4.4, X=0.56 and Y=1.3

Dynamic Equivalent Load = P,

$$P_1 = (x F_{r_1} + Y F_{a_1}) \times S$$

= $[0.56 \times 6000] + (1.3 \times 3000)] \times 1$
= $7260N$

$$\frac{\text{TI}}{\text{Co}} = 0$$

$$P_2 = \left(\times f_{m_2} + 7 f_{a_2} \right) \times S$$
where $f_{a_2} = 0$ and $X = 1$

$$P_2 = \left(\times 7500 \right) \times 1 = 7500 \text{ N}$$

$$\frac{111}{C_0} = \frac{1000}{17,600} = 0.056 \approx 0.06$$

DDB. P.NO: 4.4. Corresponding to Deep gloove ball bearing the value of e is 0.26

$$\frac{F_{a3}}{F_{r_3}} = \frac{1000}{4000} = 0.25$$

$$P_3 = \left[(x + f_{x_3}) + (y + f_{a_3}) \right] \times S$$

$$= \left[(x + 6000) + (0 \times 10000) \right] \times 1$$

Local in N Gale Time Ratio Speed in r.p. No. of revelations for 1 Himber Cycle (4) = 0 × 3 Pr=7260N 0.5 400				-			
$P_{2}=7500N$ $P_{3}=4000N$ $P_{3}=4000N$ $P_{3}=4000N$ $P_{3}=4000N$ $P_{4}=7500N$ $P_{5}=7500N$ P_{5	Load in N			1 Minute Cycle			
$P_{3} = 4000N \qquad 0.2 \qquad 900 \qquad N_{3} = 180$ $P_{3} = 4000N \qquad 0.2 \qquad 900 \qquad N_{3} = 180$ $\frac{10}{2} \text{Cubic Hean Load}, P_{m}: \qquad 2n = 575$ $DDB. P.No: 4.2$ $P_{m} = P_{3}^{3} n_{1} + P_{2}^{3} n_{2} + P_{3}^{3} n_{3}$ $= \frac{1260^{3} \times 200}{575} + \frac{1}{1200^{3} \times 195} + \frac{1}{1200^{3} \times 180}$ $= \frac{1}{1200^{3} \times 200} + \frac{1}{1200^{3} \times 195} + \frac{1}{1200^{3} \times 180}$ $= \frac{1}{1200^{3} \times 195} + \frac{1}{1200^{3} \times 195} + \frac{1}{1200^{3} \times 195}$ $= \frac{1}{1200^{3} \times 195} + \frac{1}{1200^{3} \times 195} + \frac{1}{1200^{3} \times 195} + \frac{1}{1200^{3} \times 195}$ $= \frac{1}{1200^{3} \times 195} + \frac{1}{1200^{3} $	P,=7260N	0.5	400				
$P_{3} = 4000N \qquad 0.2 \qquad 900 \qquad N_{3} = 180$ $\frac{10}{2} \text{Cubic Hean Load, } P_{m}: \qquad \qquad 2n = 575$ $\frac{10}{2} \text{DDB. } P_{1}N_{0}: 4 \cdot 2$ $P_{m} = P_{1}^{3}n_{1} + P_{2}^{3}n_{2} + P_{3}^{3}n_{3}$ $= \frac{10}{2} \text{Coo}^{3} \times 200 + \frac{10}{2} \text{Coo}^{3} \times 195 + \frac{10}{2} \text{Coo}^{3} \times 180}$ $= \frac{10}{2} \text{Coo}^{3} \times 200 + \frac{10}{2} \text{Coo}^{3} \times 195 + \frac{10}{2} \text{Coo}^{3} \times 180}$ $= \frac{10}{2} \text{Coo}^{3} \times 195 + \frac{10}{2} \text{Coo}^{3} \times 180$ $= \frac{10}{2} \text{Coo}^{3} \times 195 + \frac{10}{2} \text{Coo}^{3} \times 180$ $= \frac{10}{2} \text{Coo}^{3} \times 195 + \frac{10}{2} \text{Coo}^{3} \times 180$ $= \frac{10}{2} \text{Coo}^{3} \times 180 \text{Coo}^{3} \times 180$ $= \frac{10}{2} \text{Coo}^{3} \times 180 \text{Coo}^{3} \times 180$ $= \frac{10}{2} \text{Coo}^{3} \times 180 \text{Coo}^{3} \times 180 \text{Coo}^{3} \times 180$ $= \frac{10}{2} \text{Coo}^{3} \times 180 $	D-7500N	0.3	650	N2=195			
To Cubic Hear Load, P_m : $\frac{1}{3} = 400000$		•	900	13= 180			
DDB. P.No: 4.2 $P_{m} = \begin{bmatrix} P_{1}^{3}n_{1} + P_{2}^{3}n_{2} + P_{3}^{3}n_{3} \\ n_{1}+n_{2}+n_{3} \end{bmatrix}^{\frac{1}{3}}$ $= \frac{1}{1260^{3}\times200} + \frac{1}{1500^{3}}\times195 + \frac{1}{14000^{3}}\times180)^{\frac{1}{3}}$ $= \frac{1}{1260^{3}}\times200 + \frac{1}{15000^{3}}\times195 + \frac{1}{14000^{3}}\times180)^{\frac{1}{3}}$ $= \frac{1}{12600^{3}}\times200 + \frac{1}{15000^{3}}\times195 + \frac{1}{14000^{3}}\times180)^{\frac{1}{3}}$ $= \frac{1}{12600^{3}}\times200 + \frac{1}{15000^{3}}\times195 + \frac{1}{14000^{3}}\times180)^{\frac{1}{3}}$ $= \frac{1}{12600^{3}}\times100^{3} \times100^{3}$ $= \frac{1}{126000^{3}}\times100^{3}$ $= \frac{1}{1260000^{3}}\times100^{3}$ $= \frac{1}{12600000^{3}}\times100^{3}$ $= \frac{1}{126000000000000000000000000000000000000$	P3 = 4000N	0.2					
$P_{m} = \begin{bmatrix} P_{1}^{3} n_{1} + P_{2}^{3} n_{2} + P_{3}^{3} n_{3} \\ n_{1} + n_{2} + n_{3} \end{bmatrix}^{\frac{1}{3}}$ $= \begin{bmatrix} (260^{3} \times 200) + (500^{3} \times 195) + (4000^{3} \times 180) \\ 575 \\ = 6665.97N - 26666N \end{bmatrix}$ $P_{m} = P$ $C = \begin{bmatrix} L \\ L_{10} \end{bmatrix}^{\frac{1}{10}} P_{p}$ $C = \begin{cases} L \\ L_{10} \end{bmatrix}^$	Tu Cubic	Mean Load, Pm		£n=575			
$ \begin{array}{c c} & = (1260^{3} \times 200) + (1500^{3} \times 195) + (1600^{3} \times 180) \\ & = 6665.97N & = 6666N \\ P_{M} & = P \\ C & = (L_{10})^{V_{K}} P \\ \hline U & Life & G & Bearing: \\ C & = (L_{10})^{V_{IC}} P & L & = (26000) \times 10^{6} \\ C & = (L_{10})^{V_{IC}} P & = 59.33 \times 10^{6} \text{ yeV}. \end{array} $	DDB	P-NO:4-2					
$ \begin{array}{c c} & = (1260^{3} \times 200) + (1500^{3} \times 195) + (1600^{3} \times 180) \\ & = 6665.97N & = 6666N \\ P_{M} & = P \\ C & = (L_{10})^{V_{K}} P \\ \hline U & Life & G & Bearing: \\ C & = (L_{10})^{V_{IC}} P & L & = (26000) \times 10^{6} \\ C & = (L_{10})^{V_{IC}} P & = 59.33 \times 10^{6} \text{ yeV}. \end{array} $	P -	D3 103 1	D32 /3				
$= \frac{(1260^{3} \times 200) + (1500^{3} \times 195) + (4000^{3} \times 180)}{575}$ $= 6665.97N \sim 6666N$ $P_{M} = P$ $C = \frac{L}{L_{10}} \stackrel{V/K}{V}_{.} P$ $\frac{U}{L_{10}} \stackrel{Life}{=} \frac{a_{ij}}{a_{ij}} \frac{L = (26000)}{6666} \times 10^{6}$ $= 59.33 \times 10^{6} \text{ yeV}$	1 _M -	1					
$\begin{array}{c} = 6665.97N & \sim 6666N \\ P_{m} = P \\ C = \left(\frac{L}{L_{10}}\right)^{V_{K}}P. \\ \hline U & \text{Life of Bearing:} \\ C = \left(\frac{L}{L_{10}}\right)^{V_{IK}}P & \text{L} = \left(\frac{26000}{6666}\right) \times 10^{6} \\ C = \left(\frac{L}{L_{10}}\right)^{V_{IK}}P & = 59.33 \times 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} $	$n_1+n_2+n_3$						
$\begin{array}{c} = 6665.97N & \sim 6666N \\ P_{m} = P \\ C = \left(\frac{L}{L_{10}}\right)^{V_{K}}P. \\ \hline U & \text{Life of Bearing:} \\ C = \left(\frac{L}{L_{10}}\right)^{V_{IK}}P & \text{L} = \left(\frac{26000}{6666}\right) \times 10^{6} \\ C = \left(\frac{L}{L_{10}}\right)^{V_{IK}}P & = 59.33 \times 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} \text{ yeV.} \\ \hline C = \left(\frac{L}{P}\right)^{V_{IK}}P & = 10^{6} \text{ so } 10^{6} $	=\(\frac{1}{2}\text{b0}^3 \times \frac{3}{2} \text{10} \frac{3}{2}						
$P_{M} = P$ $C = \left(\frac{L}{L_{10}}\right)^{V_{K}} P$ $C = \left(\frac{L}{L_{10}}\right)^{V_{K}} P$ $C = \left(\frac{L}{L_{10}}\right)^{V_{K}} P$ $L = \left(\frac{26000}{6666}\right) \times 10^{6}$ $C = \left(\frac{L}{L_{10}}\right)^{V_{K}} P$ $= 59.33 \times 10^{6} \text{ yeV}$	(1 50 ×200) +(1500 × 195) +(4000 × 180)						
$ \begin{array}{c c} P_{M} = P \\ C = \left(\frac{L}{L_{10}}\right)^{V_{K}}P \\ \hline C = \left(\frac{L}{L_{10}}\right)^{V_{K}}P \\ C = \left($	_1 1						
$C = \left(\frac{L}{L_{10}}\right)^{1/K} P$ $C = \left(\frac{L}{L_{10}}\right)^{1/K} P$ $C = \left(\frac{L}{L_{10}}\right)^{1/K} P$ $L = \left(\frac{26000}{6666}\right) \times 10^{6}$ $= 59.33 \times 10^{6} \text{ yeV}.$ $\left(\frac{C}{P}\right)^{1/K} \times L_{10} = L$	P D						
$\frac{V}{C} = \frac{L}{L_{10}} \frac{V_{1c}}{P} \qquad \frac{L = \frac{26000}{6666} \times 10^6}{6666} \times 10^6}{= 59.33 \times 10^6 \text{ yeV}}$ $\frac{C}{P} \frac{K}{XL_{10}} = L$	'M =	- 1					
$C = \begin{pmatrix} L \\ L_{10} \end{pmatrix}^{V_{1c}} P$ $= \begin{pmatrix} 26000 \\ 6666 \end{pmatrix} \times 10^{6}$ $= 59.33 \times 10^{6} \text{ yeV}.$	$C = \left(\frac{L}{L_{10}}\right)^{1/K} P$						
$C = \begin{pmatrix} L \\ L_{10} \end{pmatrix}^{V_{1c}} P$ $= \begin{pmatrix} 26000 \\ 6666 \end{pmatrix} \times 10^{6}$ $= 59.33 \times 10^{6} \text{ yeV}.$	J Lile	a Bearing:					
$\left(\frac{C}{P}\right)^{K} \chi L_{10} = L$ $= 59.33 \times 10^{6} \text{ rev}.$	1 - 26,000						
$\left(\frac{C}{P}\right)^{K}\chi_{L_{10}}=L$	$C = \begin{pmatrix} L \\ L \end{pmatrix}^{YIK} P \begin{pmatrix} 6666 \\ \end{pmatrix} \times 10$						
	= 59.33 XID YEV.						
$\frac{1}{2} L = \left(\frac{C}{P}\right)^{K} L_{10}$	(x L 10 = L						
P) × 6-10	· L = (C)K						
	(P)~~10						
•							

T= TH XN X 60 LA = L NX60 = 59.33 × 106 575 × 60 = 1719.9 hours. Expected Average Life of Bearing = Syears × Rated Life = 5 × 1719.9 = 8598.55 Rours Life of Bearing = 8598.55 hours