
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND DESIGN

COURSE NAME : 19IT301 COMPUTER ORGANIZATION AND
ARCHITECTURE

II YEAR /III SEMESTER

Unit 1- BASIC STRUCTURES OF COMPUTER

Topic 1: FUNCTIONAL UNITS

COMPUTER ORGANISATION

AND ARCHITECTURE

• The components from which computers are built,

i.e., computer organization.

• In contrast, computer architecture is the science

of integrating those components to achieve a

level of functionality and performance.

• It is as if computer organization examines the

lumber, bricks, nails, and other building material

• While computer architecture looks at the design

of the house.

UNIT-I INTRODUCTION

•Evolution of Computer Systems

•Computer Types

•Functional units

•Basic operational concepts

•Bus structures

•Memory location and addresses

•Memory operations

•Addressing modes

•Design of a computer system

•Instruction and instruction sequencing,

•RISC versus CISC.

INTRODUCTION

This chapter discusses the computer

hardware, software and their

interconnection, and it also discusses

concepts like computer types, evolution of

computers, functional units, basic

operations, RISC and CISC systems.

Brief History of Computer

Evolution
Two phases:

1. before VLSI 1945 – 1978

• ENIAC

• IAS

• IBM

• PDP-8

2. VLSI 1978  present day

• microprocessors !

VLSI = Very Large

Scale Integration

Evolution of Computers
FIRST GENERATION (1945 – 1955)

• Program and data reside in the same memory

(stored program concepts – John von Neumann)

• ALP was made used to write programs

• Vacuum tubes were used to implement the

functions (ALU & CU design)

• Magnetic core and magnetic tape storage

devices are used

• Using electronic vacuum tubes, as the switching

components

SECOND GENERATION (1955 –

1965)

• Transistor were used to design ALU & CU

• HLL is used (FORTRAN)

• To convert HLL to MLL compiler were used

• Separate I/O processor were developed to
operate in parallel with CPU, thus improving the
performance

• Invention of the transistor which was faster,
smaller and required considerably less power to
operate

• IC technology improved

• Improved IC technology helped in designing low cost,
high speed processor and memory modules

• Multiprogramming, pipelining concepts were
incorporated

• DOS allowed efficient and coordinate operation of
computer system with multiple users

• Cache and virtual memory concepts were developed

• More than one circuit on a single silicon chip became
available

THIRD GENERATION (1965-1975)

FOURTH GENERATION (1975-

1985)

• CPU – Termed as microprocessor

• INTEL, MOTOROLA, TEXAS,NATIONAL
semiconductors started developing
microprocessor

• Workstations, microprocessor (PC) & Notebook
computers were developed

• Interconnection of different computer for better
communication LAN,MAN,WAN

• Computational speed increased by 1000 times

• Specialized processors like Digital Signal
Processor were also developed

• E-Commerce, E- banking, home office

• ARM, AMD, INTEL, MOTOROLA

• High speed processor - GHz speed

• Because of submicron IC technology lot of

added features in small size

BEYOND THE FOURTH GENERATION

(1985 – TILL DATE)

COMPUTER TYPES

Computers are classified based on the

parameters like

• Speed of operation

• Cost

• Computational power

• Type of application

DESK TOP COMPUTER

• Processing &storage units, visual display &audio uits,
keyboards

• Storage media-Hard disks, CD-ROMs

• Eg: Personal computers which is used in homes and
offices

• Advantage: Cost effective, easy to operate, suitable for
general purpose educational or business application

NOTEBOOK COMPUTER

• Compact form of personal computer (laptop)

• Advantage is portability

WORK STATIONS
• More computational power than PC

•Costlier

•Used to solve complex problems which arises in

engineering application (graphics, CAD/CAM etc)

ENTERPRISE SYSTEM (MAINFRAME)
•More computational power

•Larger storage capacity

•Used for business data processing in large organization

•Commonly referred as servers or super computers

SERVER SYSTEM

• Supports large volumes of data which frequently need to

be accessed or to be modified

•Supports request response operation

SUPER COMPUTERS

•Faster than mainframes

•Helps in calculating large scale numerical and algorithm

calculation in short span of time

•Used for aircraft design and testing, military application

and weather forecasting

HANDHELD
• Also called a PDA (Personal

Digital Assistant).

• A computer that fits into a

pocket, runs on batteries,

and is used while holding

the unit in your hand.

• Typically used as an

appointment book, address

book, calculator, and

notepad.

• Can be synchronized with a

personal microcomputer as

a backup.

Basic Terminology

• Computer

– A device that accepts input,
processes data, stores data,
and produces output, all
according to a series of stored
instructions.

• Hardware

– Includes the electronic and
mechanical devices that
process the data; refers to the
computer as well as peripheral
devices.

• Software

– A computer program that tells
the computer how to perform
particular tasks.

• Network

– Two or more computers and
other devices that are
connected, for the purpose of
sharing data and programs.

• Peripheral devices

– Used to expand the
computer’s input, output and
storage capabilities.

Basic Terminology
• Input

– Whatever is put into a computer system.

• Data
– Refers to the symbols that represent facts, objects, or ideas.

• Information
– The results of the computer storing data as bits and bytes; the words,

numbers, sounds, and graphics.

• Output
– Consists of the processing results produced by a computer.

• Processing
– Manipulation of the data in many ways.

• Memory
– Area of the computer that temporarily holds data waiting to be

processed, stored, or output.

• Storage
– Area of the computer that holds data on a permanent basis when it is

not immediately needed for processing.

Basic Terminology

•Assembly language program (ALP) – Programs are written

using mnemonics

•Mnemonic – Instruction will be in the form of English like

form

•Assembler – is a software which converts ALP to MLL

(Machine Level Language)

•HLL (High Level Language) – Programs are written using

English like statements

•Compiler - Convert HLL to MLL, does this job by reading

source program at once

Basic Terminology

•Interpreter – Converts HLL to MLL, does this job statement

by statement

•System software – Program routines which aid the user in

the execution of programs eg: Assemblers, Compilers

•Operating system – Collection of routines responsible for

controlling and coordinating all the activities in a computer

system

Computing Systems

Computers have two kinds of components:

• Hardware, consisting of its physical

devices (CPU, memory, bus, storage

devices, ...)

• Software, consisting of the programs it

has (Operating system, applications,

utilities, ...)

FUNCTIONAL UNITS OF COMPUTER

• Input Unit

• Output Unit

• Central processing Unit (ALU and Control Units)

• Memory

• Bus Structure

The Big Picture

Control

ALU

Memory

Processor

Input

Output

Since 1946 all computers have had 5 components!!!

Function

• ALL computer functions are:

– Data PROCESSING

– Data STORAGE

– Data MOVEMENT

– CONTROL

• NOTHING ELSE!

Data = Information

Coordinates How

Information is Used

IMPORTANT

SLIDE !

INPUT UNIT:

•Converts the external world data to a binary format, which

can be understood by CPU

•Eg: Keyboard, Mouse, Joystick etc

OUTPUT UNIT:

•Converts the binary format data to a format that a common

man can understand

•Eg: Monitor, Printer, LCD, LED etc

CPU
•The “brain” of the machine

•Responsible for carrying out computational task

•Contains ALU, CU, Registers

•ALU Performs Arithmetic and logical operations

•CU Provides control signals in accordance with some

timings which in turn controls the execution process

•Register Stores data and result and speeds up the

operation

Example

Add R1, R2

T1

T2

T3

T4

Enable R1

Enable R2

Enable ALU for addition operation

•Control unit works with

a reference signal called

processor clock

•Processor divides the

operations into basic

steps

•Each basic step is

executed in one clock

cycle

T1

T2

R1 R2

R2

MEMORY

•Stores data, results, programs

•Two class of storage

(i) Primary (ii) Secondary

•Two types are RAM or R/W memory and ROM read only memory

•ROM is used to store data and program which is not going to change.

•Secondary storage is used for bulk storage or mass storage

Basic Operational Concepts

Basic Function of Computer
• To Execute a given task as per the appropriate

program

• Program consists of list of instructions stored in

memory

Interconnection between Processor and Memory

Registers

Registers are fast stand-alone storage locations that hold data

temporarily. Multiple registers are needed to facilitate the

operation of the CPU. Some of these registers are

 Two registers-MAR (Memory Address Register) and

MDR (Memory Data Register) : To handle the data

transfer between main memory and processor. MAR-

Holds addresses, MDR-Holds data

 Instruction register (IR) : Hold the Instructions that is

currently being executed

 Program counter: Points to the next instructions that is

to be fetched from memory

•(PC) (MAR)(the contents

of PC transferred to MAR)

•(MAR) (Address bus) Select a

particular memory location

•Issues RD control signals

•Reads instruction present in memory

and loaded into MDR

•Will be placed in IR (Contents

transferred from MDR to IR)

•Instruction present in IR will be decoded by

which processor understand what operation it

has to perform

•Increments the contents of PC by 1, so that it

points to the next instruction address

•If data required for operation is available in

register, it performs the operation

•If data is present in memory following

sequence is performed

•Address of the data MAR

•MAR Address bus select memory

location where is issued RD signal

•Reads data via data bus MDR

•From MDR data can be directly routed to ALU

or it can be placed in register and then

operation can be performed

•Results of the operation can be directed

towards output device, memory or register

•Normal execution preempted (interrupt)

Interrupt

• An interrupt is a request from I/O device
for service by processor

• Processor provides requested service by
executing interrupt service routine (ISR)

• Contents of PC, general registers, and
some control information are stored in
memory .

• When ISR completed, processor restored,
so that interrupted program may continue

BUS STRUCTURE

Connecting CPU and memory

The CPU and memory are normally connected by three

groups of connections, each called a bus: data bus, address

bus and control bus

Connecting CPU and memory using three buses

BUS STRUCTURE

•Group of wires which carries information form CPU to peripherals or

vice – versa

•Single bus structure: Common bus used to communicate between

peripherals and microprocessor

SINGLE BUS STRUCTURE

INPUT MEMORY PROCESSOR OUTPUT

Continued:-

• To improve performance multi-bus structure can be

used

•In two – bus structure : One bus can be used to fetch

instruction other can be used to fetch data, required for

execution.

•Thus improving the performance ,but cost increases

A2 A1 A0 Selected

location

0 0 0 0th Location

0 0 1 1st Location

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

D0

D0 D7 D7

PROCESSOR

RDCS

W/R

A0

A1

A2

CONTROL BUS

ADDRESS BUS

DATA BUS

Cont:-

•23 = 8 i.e. 3 address line is required to select 8 location

•In general 2x = n where x number of address lines

(address bit) and n is number of location

•Address bus : unidirectional : group of wires which

carries address information bits form processor to

peripherals (16,20,24 or more parallel signal lines)

Cont:-

•Databus: bidirectional : group of wires which carries

data information bit form processor to peripherals and

vice – versa

•Controlbus: bidirectional: group of wires which carries

control signals form processor to peripherals and vice –

versa

•Figure below shows address, data and control bus and

their connection with peripheral and microprocessor

PERFORMANCE

•Time taken by the system to execute a program

•Parameters which influence the performance are

•Clock speed

•Type and number of instructions available

•Average time required to execute an instruction

•Memory access time

•Power dissipation in the system

•Number of I/O devices and types of I/O devices connected

•The data transfer capacity of the bus

MEMORY LOCATIONS AND ADDRESSES

•Main memory is the second major subsystem in a

computer. It consists of a collection of storage locations,

each with a unique identifier, called an address.

•Data is transferred to and from memory in groups of

bits called words. A word can be a group of 8 bits, 16

bits, 32 bits or 64 bits (and growing).

•If the word is 8 bits, it is referred to as a byte. The term

“byte” is so common in computer science that

sometimes a 16-bit word is referred to as a 2-byte word,

or a 32-bit word is referred to as a 4-byte word.

Figure 5.3 Main memory

Address space

•To access a word in memory requires an identifier.

Although programmers use a name to identify a word (or a

collection of words), at the hardware level each word is

identified by an address.

•The total number of uniquely identifiable locations in

memory is called the address space.

•For example, a memory with 64 kilobytes (16 address line

required) and a word size of 1 byte has an address space

that ranges from 0 to 65,535.

Memory addresses are defined using unsigned

binary integers.

i

Example 1

A computer has 32 MB (megabytes) of memory. How many bits

are needed to address any single byte in memory?

Solution

The memory address space is 32 MB, or 225 (25 × 220). This

means that we need log2 225, or 25 bits, to address each byte.

Example 2

A computer has 128 MB of memory. Each word in this computer

is eight bytes. How many bits are needed to address any single

word in memory?

Solution

The memory address space is 128 MB, which means 227.

However, each word is eight (23) bytes, which means that we

have 224 words. This means that we need log2 224, or 24 bits, to

address each word.

Assignment of byte addresses

• Little Endian (e.g., in DEC, Intel)

» low order byte stored at lowest address

» byte0 byte1 byte2 byte3

• Eg: 46,78,96,54 (32-bit data)
• H BYTE L BYTE

• 8000

• 8001

• 8002

• 8003

• 8004

54

96

78

46

|

Big Endian

• Big Endian (e.g., in IBM, Motorolla, Sun,

HP)

» high order byte stored at lowest address

» byte3 byte2 byte1 byte0

• Programmers/protocols should be careful

when transferring binary data between Big

Endian and Little Endian machines

• In case of 16-bit data, aligned words begin

at byte addresses of

0,2,4,………………………….

• In case of 32-bit data, aligned words begin

at byte address of

0,4,8,………………………….

• In case of 64-bit data, aligned words begin

at byte addresses of

0,8,16,………………………..

• In some cases, words can start at an

arbitrary byte address also then, we say

that word locations are unaligned

MEMORY OPERATIONS
• Today, general-purpose computers use a set of

instructions called a program to process data.

• A computer executes the program to create output data
from input data

• Both program instructions and data operands are stored
in memory

• Two basic operations requires in memory access

• Load operation (Read or Fetch)-Contents of
specified memory location are read by processor

• Store operation (Write)- Data from the processor
is stored in specified memory location

• INSTRUCTION SET ARCHITECTURE:-

Complete instruction set of the processor

• BASIC 4 TYPES OF OPERATION:-

• Data transfer between memory and

processor register

• Arithmetic and logic operation

• Program sequencing and control

• I/O transfer

Register transfer notation (RTN)
Transfer between processor registers & memory,

between processor register & I/O devices

Memory locations, registers and I/O register names
are identified by a symbolic name in uppercase
alphabets

• LOC,PLACE,MEM are the address of memory
location

• R1 , R2,… are processor registers

• DATA_IN, DATA_OUT are I/O registers

•Contents of location is indicated by using square

brackets []

•RHS of RTN always denotes a values, and is called

Source

•LHS of RTN always denotes a symbolic name

where value is to be stored and is called destination

•Source contents are not modified

•Destination contents are overwritten

Examples of RTN statements

• R2 [LOCN]

• R4 [R3] +[R2]

ASSEMBLY LANGUAGE

NOTATION (ALN)

• RTN is easy to understand and but
cannot be used to represent machine
instructions

• Mnemonics can be converted to machine
language, which processor understands
using assembler

Eg:

1. MOVE LOCN, R2

2. ADD R3, R2, R4

TYPE OF INSTRUCTION

Three address instruction

•Syntax: Operation source 1, source 2, destination

•Eg: ADD D,E,F where D,E,F are memory

location

•Advantage: Single instruction can perform the

complete operation

•Disadvantage : Instruction code will be too large to

fit in one word location in memory

TWO ADDRESS INSTRUCTION

•Syntax : Operation source, destination

•Eg: MOVE E,F MOVE D,F

ADD D,F OR ADD E,F

Perform ADD A,B,C using 2 instructions

MOVE B,C

ADD A,C

Disadvantage: Single instruction is not sufficient to

perform the entire operation.

ONE ADDRESS INSTRUCTION

• Syntax- Operation source/destination

• In this type either a source or destination
operand is mentioned in the instruction

• Other operand is implied to be a processor
register called Accumulator

• Eg: ADD B (general)
• Load D; ACC [memlocation _D]

• ADD E; ACC (ACC) +(E)

• STORE F; memlocation_ F (ACC)

Zero address instruction

• Location of all operands are defined

implicitly

• Operands are stored in a structure called

pushdown stack

Continued

 If processor supports ALU operations one data in memory
and other in register, then the instruction sequence is

• MOVE D, Ri

• ADD E, Ri

• MOVE Ri, F

 If processor supports ALU operations only with registers,
then one has to follow the instruction sequence given
below

• LOAD D, Ri

• LOAD E, Rj

• ADD Ri, Rj

• MOVE Rj, F

Basic Instruction Cycle

• Basic computer operation cycle

– Fetch the instruction from memory into a
control register (PC)

– Decode the instruction

– Locate the operands used by the instruction

– Fetch operands from memory (if necessary)

– Execute the operation in processor registers

– Store the results in the proper place

– Go back to step 1 to fetch the next instruction

INSTRUCTION EXECUTION & STRIAGHT LINE

SEQUENCING

Move A,R0

Add B,R0

Move R0,C

.

.

.

.

.

.

.

.

Contents

A

B

C

Data for Program

C [A]+[B]

}3-instruction program

segment

Address

Begin execution here i

i+4

i+8

• PC – Program counter: hold the address of the
next instruction to be executed

• Straight line sequencing: If fetching and
executing of instructions is carried out one by
one from successive addresses of memory, it is
called straight line sequencing.

• Major two phase of instruction execution

• Instruction fetch phase: Instruction is fetched
form memory and is placed in instruction register
IR

• Instruction execute phase: Contents of IR is
decoded and processor carries out the
operation either by reading data from memory or
registers.

BRANCHING

A straight line program for adding n

numbers
Using a loop to add n numbers

BRANCHING
• Branch instruction are those which changes the

normal sequence of execution.

• Sequence can be changed either conditionally
or unconditionally.

• Accordingly we have conditional branch
instructions and unconditional branch
instruction.

• Conditional branch instruction changes the
sequence only when certain conditions are met.

• Unconditional branch instruction changes the
sequence of execution irrespective of condition
of the results.

CONDITION CODES
CONDITIONAL CODE FLAGS: The processor keeps

track of information about the results of various
operations for use by subsequent conditional branch
instructions

• N – Negative 1 if results are Negative

0 if results are Positive

• Z – Zero 1 if results are Zero

0 if results are Non zero

• V – Overflow 1 if arithmetic overflow occurs

0 non overflow occurs

• C – Carry 1 if carry and from MSB bit

0 if there is no carry from MSB bit

Figure Format and different instruction types

Processing the instructions
Simple computer, like most computers, uses machine cycles.

A cycle is made of three phases: fetch, decode and execute.

During the fetch phase, the instruction whose address is determined by

the PC is obtained from the memory and loaded into the IR. The PC is

then incremented to point to the next instruction.

During the decode phase, the instruction in IR is decoded and the

required operands are fetched from the register or from memory.

During the execute phase, the instruction is executed, and the results are

placed in the appropriate memory location or the register.

Once the third phase is completed, the control unit starts the cycle again,

but now the PC is pointing to the next instruction.

The process continues until the CPU reaches a HALT instruction.

Types of Addressing Modes

The different ways in which the location of the
operand is specified in an instruction are referred to
as addressing modes

• Immediate Addressing

• Direct Addressing

• Indirect Addressing

• Register Addressing

• Register Indirect Addressing

• Relative Addressing

• Indexed Addressing

Immediate Addressing
• Operand is given explicitly in the instruction

• Operand = Value

• e.g. ADD 5

– Add 5 to contents of accumulator

– 5 is operand

• No memory reference to fetch data

• Fast

• Limited range

Instruction

opcode
operand

Direct Addressing

• Address field contains address of operand

• Effective address (EA) = address field (A)

• e.g. ADD A

– Add contents of cell A to accumulator

– Look in memory at address A for operand

• Single memory reference to access data

• No additional calculations to work out effective

address

• Limited address space

Direct Addressing Diagram

Address AOpcode

Instruction

Memory

Operand

Indirect Addressing (1)

• Memory cell pointed to by address field

contains the address of (pointer to) the

operand

• EA = [A]

– Look in A, find address (A) and look there for

operand

• e.g. ADD (A)

– Add contents of cell pointed to by contents of

A to accumulator

Indirect Addressing (2)

• Large address space

• 2n where n = word length

• May be nested, multilevel, cascaded

– e.g. EA = (((A)))

• Draw the diagram yourself

• Multiple memory accesses to find operand

• Hence slower

Indirect Addressing Diagram

Address AOpcode

Instruction

Memory

Operand

Pointer to operand

Register Addressing (1)

• Operand is held in register named in

address field

• EA = R

• Limited number of registers

• Very small address field needed

– Shorter instructions

– Faster instruction fetch

Register Addressing (2)

• No memory access

• Very fast execution

• Very limited address space

• Multiple registers helps performance

– Requires good assembly programming or

compiler writing

Register Addressing Diagram

Register Address ROpcode

Instruction

Registers

Operand

Register Indirect Addressing

• C.f. indirect addressing

• EA = [R]

• Operand is in memory cell pointed to by

contents of register R

• Large address space (2n)

• One fewer memory access than indirect

addressing

Register Indirect Addressing Diagram

Register Address ROpcode

Instruction

Memory

OperandPointer to Operand

Registers

Indexed Addressing

• EA = X + [R]

• Address field hold two values

– X = constant value (offset)

– R = register that holds address of memory
locations

– or vice versa

(Offset given as constant or in the index
register)

Add 20(R1),R2 or Add 1000(R1),R2

Indexed Addressing Diagram

Register ROpcode

Instruction

Memory

OperandPointer to Operand

Registers

Constant Value

+

Relative Addressing

• A version of displacement addressing

• R = Program counter, PC

• EA = X + (PC)

• i.e. get operand from X bytes away from

current location pointed to by PC

• c.f locality of reference & cache usage

Auto increment mode

• The effective address of the operand is the

contents of a register specified in the

instruction.

• After accessing the operand, the contents of

this register are automatically incremented to

point to the next item in the list

• EA=[Ri]; Increment Ri ---- (Ri)+

Eg: Add (R2)+,R0

Auto decrement mode

• The contents of a register specified in the

instruction are first automatically

decremented and are then used as the

effective address of the operand

• Decrement Ri; EA= [Ri] ----- -(Ri)

Addressing Architecture

• Memory-to-Memory architecture
– All of the access of addressing -> Memory

– Have only control registers such PC

– Too many memory accesses

• Register-to-Register architecture
– Allow only one memory address

• “load”, “store” instructions

• Register-to-Memory architecture
– Program lengths and # of memory accesses tend to be intermediate

between the above two architectures

• Single accumulator architecture
– Have no register profile

– Too many memory accesses

• Stack architecture
– Data manipulation instructions use no address.

– Too many memory (stack) accesses

– Useful for rapid interpretation of high-level lang. programs in which
the intermediate code representation uses stack operations.

Addressing Modes

• Implied mode

–The operand is specified implicitly in the

definition of the opcode.

• Immediate mode

–The actual operand is specified in the

instruction itself.

Addressing Modes (Summary)

Base register LDA #ADRS(R1) ACC <- M[R1+ADRS]

Instruction Set Architecture
• RISC (Reduced Instruction Set Computer) Architectures

– Memory accesses are restricted to load and store instruction,

and data manipulation instructions are register to register.

– Addressing modes are limited in number.

– Instruction formats are all of the same length.

– Instructions perform elementary operations

• CISC (Complex Instruction Set Computer) Architectures

– Memory access is directly available to most types of

instruction.

– Addressing mode are substantial in number.

– Instruction formats are of different lengths.

– Instructions perform both elementary and complex

operations.

Instruction Set Architecture

• RISC (Reduced Instruction Set Computer)
Architectures
– Large register file

– Control unit: simple and hardwired

– pipelining

• CISC (Complex Instruction Set Computer)
Architectures
– Register file: smaller than in a RISC

– Control unit: often micro-programmed

– Current trend
• CISC operation  a sequence of RISC-like operations

CISC Examples

• Examples of CISC processors are the

– System/360(excluding the 'scientific' Model

44),

– VAX,

– PDP-11,

– Motorola 68000 family

– Intel x86 architecture-based processors.

Pro’s

• Emphasis on hardware

• Includes multi-clock complex
instructions

• Memory-to-memory:
"LOAD" and "STORE"
incorporated in instructions

• Small code sizes,
high cycles per second

• Transistors used for storing
complex instructions

Con’s

• That is, the incorporation of older instruction sets
into new generations of processors tended to
force growing complexity.

• Many specialized CISC instructions were not
used frequently enough to justify their existence.

• Because each CISC command must be
translated by the processor into tens or even
hundreds of lines of microcode, it tends to run
slower than an equivalent series of simpler
commands that do not require so much
translation.

RISC Examples

• Apple iPods (custom ARM7TDMI SoC)

• Apple iPhone (Samsung ARM1176JZF)

• Palm and PocketPC PDAs and smartphones
(Intel XScale family, Samsung SC32442 -
ARM9)

• Nintendo Game Boy Advance (ARM7)

• Nintendo DS (ARM7, ARM9)

• Sony Network Walkman (Sony in-house ARM
based chip)

• Some Nokia and Sony Ericsson mobile phones

Pro’s

• Emphasis on software

• Single-clock,
reduced instruction only

• Register to register:
"LOAD" and "STORE"
are independent instructions

• Low cycles per second,
large code sizes

• Spends more transistors
on memory registers

Performance

• The CISC approach attempts to
minimize the number of instructions
per program, sacrificing the number
of cycles per instruction. RISC does
the opposite, reducing the cycles per
instruction at the cost of the number
of instructions per program.

Characteristics of RISC Vs CISC

processors

No RISC CISC

1 Simple instructions taking one

cycle

Complex instructions taking

multiple cycles

2 Instructions are executed by

hardwired control unit

Instructions are executed by

microprogramed control unit

3 Few instructions Many instructions

4 Fixed format instructions Variable format instructions

5 Few addressing mode, and most

instructions have register to

register addressing mode

Many addressing modes

6 Multiple register set Single register set

7 Highly pipelined Not pipelined or less pipelined

SUMMARY

Computer components and its function

Evolution and types of computer

Instruction and instruction sequencing

Addressing modes

RISC Vs CISC

REFERENCES

• Carl Hammacher,”Computer

Organization,”Fifth Edition,McGrawHill

International Edition,2002

• P.Pal Chaudhuri,”Compter Organization

and Design”,2nd Edition ,PHI,2003

• William Stallings,”Computer organization

and Architecture-Designing for

Performance”,PHI,2004

