SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641107

An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 19CS503 Cryptography and Network Security
III YEAR /V SEMESTER
Unit 1- Introduction
Topic: Substitution Techniques-02
\square

[^0]
Recap : Classification of Cryptography

Substitution Techniques

\square A substitution technique is one in which the letters of plaintext are replaced by other letters or by numbers or symbols.
\square Caesar Cipher
\square Monoalphabetic Ciphers

- Playfair Cipher
\square Hill Cipher
\square Polyalphabetic Ciphers
- One-Time Pad

Hill Cipher

\square Multiletter Cipher
Lester Hill in 1929 - Mathematician
\square Encryption

$\square \mathrm{m}$ successive plaintext - Substitutes to m cipher text Letters
$\square \mathrm{m}=$ linear
\square Each character assigned with numeric values ($a=0, b=1 \ldots . . \mathrm{z}=25$)

Hill Cipher

\square If m = 3, General form

$$
\begin{aligned}
c_{1} & =\left(k_{11} p_{1}+k_{12} p_{2}+k_{13} p_{3}\right) \bmod 26 \\
c_{2} & =\left(k_{21} p_{1}+k_{22} p_{2}+k_{23} p_{3}\right) \bmod 26 \\
c_{3} & =\left(k_{31} p_{1}+k_{32} p_{2}+k_{33} p_{3}\right) \bmod 26
\end{aligned}
$$

Expressed in column vectors and matrices

$$
\begin{aligned}
& C=E(K, P)=K P \bmod 26 \\
& P=D(K, P)=K^{-1} C \bmod 26=K^{-1} K P=P
\end{aligned}
$$

$$
\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{lll}
k_{11} & k_{12} & k_{13} \\
k_{21} & k_{22} & k_{23} \\
k_{31} & k_{32} & k_{33}
\end{array}\right)\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right) \bmod 26
$$

Hill Cipher

Consider $\mathrm{m}=3$, the plain text " paymoremoney

$$
P=\left(\begin{array}{cccc}
p & m & e & n \\
a & o & m & e \\
y & r & o & y
\end{array}\right) \quad P=\left(\begin{array}{cccc}
15 & 12 & 4 & 13 \\
0 & 14 & 12 & 4 \\
24 & 17 & 14 & 24
\end{array}\right)
$$

\square Encryption Key

$$
K=\left(\begin{array}{ccc}
17 & 17 & 5 \\
21 & 18 & 21 \\
2 & 2 & 19
\end{array}\right)
$$

Hill Cipher

$$
\begin{aligned}
& P . T_{1}=\left[\begin{array}{l}
p \\
a \\
y
\end{array}\right]=\left[\begin{array}{c}
15 \\
0 \\
24
\end{array}\right] \\
& C . T_{1}=\text { Key } x P . T_{1} \bmod 26=\left[\begin{array}{ccc}
17 & 17 & 5 \\
21 & 18 & 21 \\
2 & 2 & 19
\end{array}\right]\left[\begin{array}{c}
15 \\
0 \\
24
\end{array}\right] \bmod 26=\left[\begin{array}{c}
11 \\
13 \\
18
\end{array}\right]=\left[\begin{array}{l}
L \\
N \\
S
\end{array}\right] \\
& C . T_{2}=\text { Key } x P . T_{2} \bmod 26=\left[\begin{array}{ccc}
17 & 17 & 5 \\
21 & 18 & 21 \\
2 & 2 & 19
\end{array}\right]\left[\begin{array}{c}
12 \\
14 \\
17
\end{array}\right] \bmod 26=\left[\begin{array}{c}
7 \\
3 \\
11
\end{array}\right]=\left[\begin{array}{l}
H \\
D \\
L
\end{array}\right]
\end{aligned}
$$

Find the Cipher for the rest of the Example

$$
P \cdot T_{3}=\left(\begin{array}{c}
e \\
m \\
o
\end{array}\right)
$$

$$
P \cdot T_{4}=\left(\begin{array}{l}
n \\
e \\
y
\end{array}\right)
$$

Decryption using Hill Cipher

Decryption - inverse of K^{-1}
We know that, $\mathrm{K} \mathrm{K}^{-1}=\mathrm{K}^{-1} \mathrm{~K}=\mathrm{I}$

$$
\begin{aligned}
K=\left(\begin{array}{ccc}
17 & 17 & 5 \\
21 & 18 & 21 \\
2 & 2 & 19
\end{array}\right) \quad K^{-1}= & \left(\begin{array}{ccc}
4 & 9 & 15 \\
15 & 17 & 6 \\
24 & 0 & 17
\end{array}\right) \quad K K^{-1}=\left(\begin{array}{ccc}
17 & 17 & 5 \\
21 & 18 & 21 \\
2 & 2 & 19
\end{array}\right)\left(\begin{array}{ccc}
4 & 9 & 15 \\
15 & 17 & 6 \\
24 & 0 & 17
\end{array}\right) \\
& =\left(\begin{array}{ccc}
443 & 442 & 442 \\
858 & 495 & 780 \\
494 & 52 & 365
\end{array}\right) \bmod 26=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Activity

Polyalphabetic Cipher

- The first known polyalphabetic cipher was the Alberti Cipher invented by Leon Battista Alberti in around 1467.
- Vigenère Cipher $\mathrm{C}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}}$ XOR $_{\mathrm{K}} \mathrm{P}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}}$ XOR K_{i}

Vigenère Cipher Table

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
A	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	z
B	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	z	A
C	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	z	A	B
D	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	z	A	B	C
E	E	F	G	H	I	J	K	L	M	N	\bigcirc	P	Q	R	S	T	U	V	W	X	Y	z	A	B	C	D
F	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	z	A	B	C	D	E
G	G	H	I	J	K	L	M	H	0	P	Q	R	S	T	U	V	W	X	Y	z	A	B	C	D	E	F
H	H	I	J	K	L	M	H	0	P	Q	R	S	T	U	V	W	X	Y	z	A	B	C	D	E	F	G
I	I	J	K	L	M	H	0	P	Q	R	S	T	U	V	W	X	Y	z	A	B	C	D	E	F	G	H
\boldsymbol{J}	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	z	A	B	C	D	E	F	G	H	I
K	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	z	A	B	C	D	E	F	G	H	I	J
L	L	M	H	0	P	Q	R	S	T	U	V	W	X	Y	z	A	B	C	D	E	F	G	H	I	J	K
M	M	N	0	P	Q	R	S	T	U	V	W	X	Y	2	A	B	C	D	E	F	G	H	I	J	K	L
N	N	0	P	Q	R	S	T	U	V	W	X	Y	z	A	B	C	D	E	F	G	H	I	J	K	L	M
O	0	P	Q	R	5	T	U	V	W	X	Y	z	A	B	C	D	E	F	G	H	I	J	K	L	M	N
P	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
Q	Q	R	S	T	U	V	W	X	Y	z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P
R	R	S	T	V	V	W	X	Y	2	A	B	C	D	E	F	G	H	I	J	K	L	M	H	0	P	Q
S	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R
T	T	U	V	W	X	Y	2	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S
U	U	V	W	X	Y	z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T
V	V	W	X	Y	z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	\bigcirc	P	Q	R	S	T	U
W	W	X	Y	z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	\bigcirc	P	Q	R	S	T	U	V
X	X	Y	z	A	B	C	D	E	F	G	H	I	J	K	L	M	H	0	P	Q	R	S	T	U	V	W
Y	Y	z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	\bigcirc	P	Q	R	S	T	U	V	W	X
Z	z	A	B	C	D	E	F	G	H	I	J	K	L	M	H	0	P	Q	R	S	T	U	V	W	X	Y

Let's play a game of hiding the message using Polyalphabetic Cipher

We are discovered save yourself

deceptive

key	3	4	2	4	15	19	8	21	4	3	4	2	4	15
plaintext	22	4	0	17	4	3	8	18	2	14	21	4	17	4
ciphertext	25	8	2	21	19	22	16	13	6	17	25	6	21	19

key	19	8	21	4	3	4	2	4	15	19	8	21	4
plaintext	3	18	0	21	4	24	14	20	17	18	4	11	5
ciphertext	22	0	21	25	7	2	16	24	6	11	12	6	9

One Time Pad

- Each new message - requires new key of same length
- Unbreakable
- No relationship to plain Text

Let's play a game of hiding the message using One Time Pad

Mr Mustard with the candlestick in the hall

Assessment

Compute the Ciphertext using Playfair Cipher

Perform Encryption and decryption using Hill Cipher for the following Message PEN and Key: ACTIVATED

REFERENCES

1. William Stallings, Cryptography and Network Security, 6 th Edition, Pearson Education, March 2013.

THANK YOU

[^0]: Polygram Substitution

