

# **SNS COLLEGE OF ENGINEERING**

Kurumbapalayam (Po), Coimbatore – 641 107

### **An Autonomous Institution**

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

### **DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING**

### COURSE NAME :19IT301 COMPUTER ORGANIZATION AND ARCHITECTURE II YEAR /III SEMESTER

### Unit 1- BASIC STRUCTURE OF COMPUTERS

Topic 8 : Assembly language





## Assembly language

✓ An assembly language is a low-level programming language designed for a specific type of processor.

✓ The set of rules for using the mnemonics in the specification of complete instructions and programs is called the syntax of the language ✓ The user program in its original alphanumeric text format is called a

source program

✓ The assembled machine language program is called an object program

 Programs written in an assembly language can be automatically translated into a sequence of machine instructions by a program called an assembler





✓ Assembler directives supply data to the program and control the assembly process

✓ It improves program readability.

- Examples of common assembler directives are
- $\geq$  ORG (origin),
- ► EQU (equate)
- > DATAWORD
- **≻**RESERVE
- ➢ RETURN
- ✓ SUM EQU 200

It simply informs the assembler that the name SUM should be replaced by the value 200 wherever it appears in the program







### Assembly language – Assembler directives

 $\checkmark$  If the assembler is to produce an object program, it has to know

- How to interpret the names
- Where to place the instructions in the memory
- Where to place the data operands in the memory
- $\checkmark$  To provide this information, the source program may be written as shown in Figure 2.18

✓ The program begins with assembler directives





## Assembly language – Assembler directives

|                      |         |           |             |      | 11-0000-000 |           |          |
|----------------------|---------|-----------|-------------|------|-------------|-----------|----------|
|                      |         |           |             |      | 100         | Move      | N,R1     |
|                      | Memory  |           | Addressing  |      | 104         | Move      | #NUM1,R2 |
|                      | address |           | or data     |      | 108         | Clear     | R0       |
|                      | label   | Operation | information | LOOP | 112         | Add       | (R2),R0  |
|                      |         |           |             |      | 116         | Add       | #4,R2    |
| Assembler directives | SUM     | EQU       | 200         |      | 120         | Decrement | RI       |
|                      |         | ORIGIN    | 204         |      | 124         | Branch>0  | LOOP     |
|                      | Ν       | DATAWORD  | 100         |      | 128         | Move      | R0.SUM   |
|                      | NUM1    | RESERVE   | 400         |      | 132         |           |          |
|                      |         | ORIGIN    | 100         |      | 1.52        |           |          |
| Statements that      | START   | MOVE      | N,R1        |      |             |           | •        |
| generate             |         | MOVE      | #NUM1,R2    |      |             | 1         |          |
| machine              |         | CLR       | R0          | CT D | 200         |           |          |
| instructions         | LOOP    | ADD       | (R2),R0     | SUM  | 200         | -         |          |
|                      |         | ADD       | #4,R2       | N    | 204         | 10        | 00       |
|                      |         | DEC       | R1          | NUM1 | 208         |           |          |
|                      |         | BGTZ      | LOOP        | NUM2 | 212         | 1         |          |
|                      |         | MOVE      | R0,SUM      |      |             |           |          |
| Assembler directives |         | RETURN    |             |      |             | 1         | :        |
|                      |         | END       | START       |      |             |           | •        |
|                      |         |           |             | NUMn | 604         | -         |          |

Figure 2.18 Assembly language representation for the program in Figure 2.17.



Figure 2.17 Memory arrangement for the program in Figure 2.12.



## Assembly language – Assembler directives

- ✓ The Equate directive, EQU, which informs the assembler about the value of SUM.
- The directive, ORIGIN, tells the assembler program where in the memory to place the data block that follows.
- ✓ DATAWORD: states that the data value 100 is to be placed in the memory word at address 204
- ✓The RESERVE directive declares that a memory block of 400 bytes is to be reserved for data
- ✓ The second ORIGIN directive specifies that the instructions of the object program are to be loaded in the memory starting at address 100.
  ✓ RETURN: returns control to the operating system of the computer.
  ✓ Labels may also be associated with addresses of data items . In Figure 2.18 there are four labels: SUM, N, NUM1 and LOOP





## Assembly language – Assembly and execution of programs



Assembly language/Computer organization and architecture/Dr.K.Periyakaruppan/CSE/SNSCE





Assembly language – Number notation

► ADD #93,R1 Decimal number system >ADD #%01011101,R1 Binary number system ≻ADD #\$5D,R1 Hexa decimal number system  $\geq$  MOVE #5,(R2) or MOVEI 5, (R2) depends on assembly language





### Assessment

a). What is Assembly language?

b) Give the purpose of the following assembler directives: **1.ORIGIN** 

- 2. RETURN
- 3.EQU
- 4. RESERVE







### Reference

1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6<sup>th</sup> Edition 2012.



10/10