

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME :19IT301 COMPUTER ORGANIZATION AND ARCHITECTURE II YEAR /III SEMESTER

Unit 1- BASIC STRUCTURE OF COMPUTERS

Topic 7 : Instruction and Instruction sequencing

Instruction and Instruction sequencing

A computer must have instructions capable of performing four types of operations:

- 1. Data transfers between the memory and the processor registers
- 2. Arithmetic and logic operations on data
- Program sequencing and control 3.
- I/O transfers 4.

Instruction and Instruction sequencing-Register Transfer Notation (RTN)

✓ Identify a location by a symbolic name standing for its hardware binary address (LOC, RO,...) ✓ Contents of a location are denoted by placing square brackets around the name of the location $R1 \leftarrow [LOC]$ $R3 \leftarrow [R1]+[R2])$

Instruction and Instruction sequencing-Assembly language notation

Represent machine instructions and programs. Move LOC, $R1 = R1 \leftarrow [LOC]$ Add R1, R2, R3 = R3 \leftarrow [R1]+[R2]

Instructions and instruction sequencing/Computer organization and architecture/Dr.K.Periyakaruppan/CSE/SNSCE

Instruction and Instruction sequencing-Basic Instruction types

Three-Addre	ess Instruction	S		
Add	A,B,C	$C \leftarrow [A] + [B]$		
Two-Addres	s Instructions			
Add	B,D	$D \leftarrow [B]+[D]$		
One-Address Instructions				
Add	В	$AC \leftarrow [AC] + [B]$		
Load	А			
Store	С			
Zero-Addres	s Instructions			
Add		$TOS \leftarrow TOS + (TOS - 1)$		

Instruction and Instruction sequencing- Basic instruction types

Example: Evaluate C= A+ B Both the operands are in registers Move A,R0 Move B,R1 Add RO,R1 Move R1,C

Example: One operand in the memory and another one in the register

- 1. Move A, R1
- 2. Add B,R1
- 3. Move R1,C

Instruction Execution and Straight-Line Sequencing

Assumptions:

- One memory operand per instruction
- 32-bit word length
- Memory is byte addressable
- Full memory address
 can be directly specified
 in a single-word instruction

Two-phase procedure -Instruction fetch -Instruction execute

Page 43

Μ	ove	NUI
Ac	bb	NU
Ac	bb	NU
		•
		•
Ac	d	NU
Μ	ove	R0,
		•
		•
		•
		•
		•
		•
nt-line p	orograi	n fo
	M Ac Ac M	Move Add Add Move

9/13/2022

Instructions and instruction sequencing/Computer organization and architecture/Dr.K.Periyakaruppan/CSE/SNSCE

or adding *n* numbers.

9/13/2022

Instructions and instruction sequencing/Computer organization and architecture/Dr.K.Periyakaruppan/CSE/SNSCE

ove	N,R1	
ar	RO	
ermine add kt" number kt" number	lress of r and add r to R0	
crement	R1	
>0	LOOP	
ove	RO,SUM	
•		
•		
•		
n		
•		
•		
•		

Instruction and Instruction sequencing

Condition code flags

Condition code register / status register N (negative) Z (zero) V (overflow) C (carry) Different instructions affect different flags

Assessment

a). What are the 4 types of operations?

b) Give the purpose of the following:

- 1.Register transfer notation_____
- 2. Assembly language notation _____
- 3.Condition code flags _____

Reference

1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6th Edition 2012.

