
LINEAR DATA STRUCTURES

UNIT - 2

Stack ADT
⚫ A Stack is a linear data structure where the collection of items are accessed by Last In First Out (LIFO)

or First In Last Out (FILO) order.

⚫ A Stack represents an ordered collection of homogeneous (same data type) elements.

⚫ Both insertion , deletion operations can be done only at one end (last element), called the top of the

stack.

⚫ We can implement Stack using Array or Linked List.

⚫ Stack also referred as “Push-down lists”.

⚫ Real-Time Examples of Stack :

- Car Parking

- Pile of Coins

- Stack of trays

- Pile of Notebooks

- Coaches of Train

Representation of Stack Model:

- The first element placed in the stack will be the bottom of the

stack.

- The last element placed in the stack will be at the top of the stack.

- The last element added to the stack is the first element to be

popped out.

- Hence stacks are referred to as Last In First Out or First In Last

Out.

a

Top

e

d

c

b

a

Top

Exceptional Conditions:

Overflow Condition:

- An attempt to insert an element when the stack is full is said to

be Overflow and the new can not be pushed.

Underflow Condition:

- An attempt to delete an element when the stack is empty is

said to be Underflow and

Ways of Implementation of Stack :

→ Array Implementation

→ Linked List Implementation

Implementation of Stack

⚫ A stack represents an ordered collection of homogeneous elements.

⚫ It can be implemented using arrays / linked list.

⚫ Arrays – Better implementation when the number of elements are known.

⚫ Linked list – Better implementation when the number of elements are not known.

Array Implementation of Stack:

30

20

100

1

2
TOP

30

20

100

1

2

3

TOP

40

30

20

100

1

2

3

TOP

Array Implementation of Stack (Contd.,)

⚫ Create (S) – Create an empty Stack

⚫ Push (S, element) – Inserts an element

⚫ Pop (S) – Deletes an element

⚫ ShowTop (S) – Returns the Top element

Create (S):

void Create (STACK *S)

{

S[TOP] = -1; // S→Top

}

→ Create an empty stack.

→ Initializes the space to be used for elements to be pushed.

→ Allocation of space can be Static using arrays or Dynamic using linked list.

→ As all operations are performed on the top element, we need to have the index or the pointer to it (
Top pointer).

→ Top pointer should be properly initialized to denote an empty stack.

Empty

TOP

Push (S, Element):

Algorithm:

Step 1: Check whether the Stack is full or not. If yes, print the message that the

Stack is full. i.e., Overflow. Then the Push operation can not be performed.

Step 2: Else,

i) TOP pointer is incremented by 1.

ii) new element is pushed at the position TOP.

Routine for Push operation:

#define MAX 50

int TOP = -1;

int stack [MAX];

void Push (int data)

{

if(TOP = =MAX-1)

{

printf("Stack Overflow");

return;

}

else

{

// Push an element into a stack

++TOP;

printf(“\n Enter the element to be pushed”);

scanf(“%d”, &data);

stack [TOP] = data;

}

}

Pop (S):

Algorithm:

Step 1: Check whether the Stack is empty or not. If yes, print the message that

the stack is empty. i.e., Underflow. Then the pop operation can not be

performed.

Step 2: Else,

i) The element at the position of TOP is deleted.

ii) TOP is decremented by 1.

Routine for Pop Operation:

void Pop()

{

if (TOP == -1)

{

printf (“ Stack Underflow”);

return;

}

else

{

printf (“The Popped item is”, stack [TOP]);

--TOP;

}

}

ShowTop (S) or Peek (S) :

→ Check whether the stack is empty.

→ Return / Print the top element as pointed by the top pointer.

Routine for ShowTop():

Void ShowTop ()

{

int TOP = S→TOP;

If (TOP == -1)

{

printf (“ Stack Underflow”);

Return NULL;

}

return S → Element [TOP];

}

Linked List Implementation of Stack:

⚫ In the stack Implementation, a stack contains a TOP pointer,
which is the “head” of the stack where pushing and popping data
items happens at the head of the list.

⚫ The first node has a NULL in the link field and second node-link
has the first node address in the link field and so on and the last
node address is in the “TOP” pointer.

⚫ The main advantage of using a linked list over arrays is that it is
possible to implement a stack that can shrink or grow as much as
needed.

⚫ Using an array will put a restriction on the maximum capacity of
the array which can lead to stack overflow. Here each new node
will be dynamically allocated. so overflow is not possible.

Why Linked list Representation?

- Use linked list when the size of the stack is not known in advance.

Size is known in advance

Stack

No limitation on the number of nodes we can create

1 2 3 4 5 6 7Stack

34 21 78 NULL

Why should we prefer the beginning of the linked list as the

Top of the Stack ?

Stack

→We will select the beginning of the linked list as the top of the stack.

→For Push operation , a node will be inserted at the beginning of the linked list.

→For Pop operation, every time the first node of the linked list will be deleted.

→ This automatically holds because the TOP pointer is pointing to the first node

of the linked list.

34 78
NULL

21

TOP

Why we prefer Adding and Removing the

first node of the linked list?

Time complexity of adding a node at the beginning : O(1)

Time complexity of removing the first node : O(1)

But what if we take the end of the linked list as the TOP

of the stack?

- Deleting the last node of the singly linked list requires Traversal.

- Time Complexity of adding a node at the end : O(1)

- Time Complexity of removing the last node: O(n)

- The code of the Push () function must be similar to the code of inserting the node

at the beginning of the singly linked list.

- The code of the Pop () function must be similar to the code of deleting the first node

of the singly linked list.

- Stack Overflow occurs when there is no space left to dynamically allocate the memory.

- In that case, malloc () function will return NULL.

- Stack Underflow occurs when top is equal to NULL.

Structure of the Node:

- Structure of the node representing a stack element is same as the structure of the

node of the singly linked list. The top pointer must always point to the first node of the linked list.

Struct node

{

int data;

Struct node* next;

} * top = NULL; // Top pointer is globally declared

Push Operation

- Similar to the insert at beginning function of the singly linked list with small

changes.

- We have to add a new node with a value of 50 in its data part at the beginning of

the list.

Procedure:

→ Create a new node.

→ Allocate memory space for the new node.

→ Store the data in the data field.

→ Put the address of the first node of the linked list in the next part of the new node.

→ Update the top pointer and make it point to the new node of the linked list.

35 45

Top

Routine for Push Operation

sturct node* newnode;

newnode = malloc (sizeof (sturct node));

if(newnode = = NULL)

/* malloc() function retruns NULL when the requested memory can’t be allocated */

{

printf(“Stack Overflow”);

exit (1);

}

newnode → data = Element;

newnode → next = NULL;

newnode → data = Top;

Top = newnode;

After inserting a new node at the front,

35 4550

Top

new node

Top

Routine to Print all the elements in the List

void Print ()

{

struct node* Temp;

Temp = Top;

printf (“ The Stack elements are:”);

While (Temp!= NULL)

{

printf (“%d”, Temp → data);

Temp = Temp → next;

}

}

Pop Operation

- Pop function of stack is similar to the delete a node at the front

function of the singly linked list with small changes.

Procedure

→ Create a temporary pointer for the purpose of deletion.

→ Update the temporary pointer so that it can point to the first node of the

linked list.

→ Store the value of the first node somewhere.

→ Update the top pointer so that it can point to the next node of the linked

list.

→ Delete the node pointed by the temporary pointer.

→ Return the value of the first node.

Routine for Pop Function

int Pop ()

{

struct node* Temp;

Temp = Top;

int val = Temp → data;

Top = Top → next;

free (Temp);

Temp = NULL;

return val; // return the popped element

}

/* Store the value of the first node (data = 50) somewhere and

update the top pointer so that it can point to the next node of the linked list */

35 4550

Top Temp

50 35 45

Temp Top

50

val

After Popped out 50 from the list,

35 45

Top

isEmpty Function

int isEmpty ()

{

if (Top == NULL)

/* Top pointer will the hold NULL when there is no node in the linked list */

return 1; // Stack is empty

else

return 0; // Stack is not empty

}

ShowTop or Peek Function

int ShowTop ()

{

if (isEmpty())

{

printf (“ Stack Underflow”);

exit (1);

}

return Top → data;

}

