

Kurumbapalayam(Po), Coimbatore - 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Information Technology

Course Name - 19IT301 Computer Organization and **Aechitecture**

II Year / III Semester

Unit 1 – Basic Structures of Computers

Topic: Addressing Modes

Addressing Modes

> <u>Implied</u>

AC is implied in "ADD M[AR]" in "One-Address" instr.

TOS is implied in "ADD" in "Zero-Address" instr.

> <u>Immediate</u>

The use of a constant in "MOV R1, 5", i.e. R1 \leftarrow 5

> Register

Indicate which register holds the operand

Address Modes

• Register Indirect

Indicate the register that holds the number of the register that holds the operand
MOV R1, (R2)

• Autoincrement / Autodecrement

Access & update in 1 instruction.

Direct Address

Use the given address to access a memory location

Indirect Address

• IndirectAddress:Indicate the memory location that holds the address of the memory location that holds the data

Relative Address

Addressing Modes

- Relative Address
 - EA = PC + Relative Addr

Indexed Mode

104

Base register

Address mode types

 The different ways in which the location of an operand is specified in an instruction are referred to as addressing modes.

Name	Assembler syntax	Addressing function
Immediate	#Value	Operand = Value
Register	R <i>i</i>	EA = Ri
Absolute (Direct)	LOC	EA = LOC
Indirect	(Ri) (LOC)	EA = [Ri] EA = [LOC]
Index	X(Ri)	EA = [Ri] + X
Basewith index	(R/,Rf)	EA = [R/] + [R/]
Basewith index and offset	$X(R_i,R_j)$	EA = [Ri] + [Rj] + X
Relative	X(PC)	EA = [PC] + X
Autoincrement	(Ri)+	EA = [Ri]; Increment R/
Autodecrement	-(R/)	Decrement R/; EA = [R/]

Additional Modes

INSTITUTIONS

- ➤ Autoincrement mode the effective address of the operand is the contents of a register specified in the instruction. After accessing the operand, the contents of this register are automatically incremented to point to the next item in a list.
- ➤ (R_i)+. The increment is 1 for byte-sized operands, 2 for 16-bit operands, and 4 for 32-bit operands.
- \triangleright Autodecrement mode: $-(R_i)$ decrement first

THANK YOU