
UNIT I
BASIC STRUCTURE OF COMPUTERS 
Functional units – Basic operational
Performance – Memory locations
operations – Instruction and Instruction
modes – Assembly language
Architecture.

UNIT I
BASIC STRUCTURE OF COMPUTERS 

operational concepts – Bus Structures –
locations and addresses – Memory

Instruction sequencing – Addressing
– Case study : RISC and CISC
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Recall the previous class concepts
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Addressing modes
• The different ways of specifying the location

as addressing modes.

• Starting address of memory segment.

• Effective address or Offset: An offset is determined by adding any combination of three 

address elements: displacement, base and index.

• Displacement: It is an 8 bit or 16 bit immediate value given in the instruction.

• Base: Contents of base register, BX or BP.

• Index: Content of index register SI or DI.

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

Addressing modes
location of an operand in an instruction are called

: An offset is determined by adding any combination of three 

displacement, base and index.

It is an 8 bit or 16 bit immediate value given in the instruction.
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1. Implied / Implicit Addressing Mode
2. Stack Addressing Mode
3. Immediate Addressing Mode
4. Direct Addressing Mode
5. Indirect Addressing Mode
6. Register Direct Addressing Mode
7. Register Indirect Addressing Mode
8. Relative Addressing Mode
9. Indexed Addressing Mode
10. Base Register Addressing Mode
11. Auto-Increment Addressing Mode
12. Auto-Decrement Addressing Mode

Types of Addressing 
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Implied / Implicit Addressing Mode

Register Direct Addressing Mode
Register Indirect Addressing Mode

Base Register Addressing Mode
Increment Addressing Mode
Decrement Addressing Mode
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Implied / Implicit Addressing Mode
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Implied / Implicit Addressing Mode
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Stack Addressing Mode
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Stack Addressing Mode
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Immediate Addressing Mode
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Immediate Addressing Mode
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Direct Addressing Mode
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ADD X will increment the value stored

memory location X.

AC ← AC +

Direct Addressing Mode
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stored in the accumulator by the value stored

+ [X]
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Indirect Addressing Mode
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Indirect Addressing Mode
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ADD X will increment the value stored

in the accumulator by the value stored

at memory location specified by X.

AC ← AC + [[X]]
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Register Direct Addressing Mode
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Register Direct Addressing Mode
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ADD R will increment the value 

stored in the accumulator by the 

content of register R.

AC ← AC + [R]
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Register Indirect Addressing Mode
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ADD R will increment the value stored in the accumulator by the 

content of memory location specified in register R.
AC ← AC + [[R]]

Register Indirect Addressing Mode
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ADD R will increment the value stored in the accumulator by the 

content of memory location specified in register R.
AC ← AC + [[R]]
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Relative Addressing Mode
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Effective Address = Content of Program Counter + 

Relative Addressing Mode
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Content of Program Counter + Address part of the instruction
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Indexed Addressing Mode
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Effective Address = Content of Index Register + Address part of the instruction

Indexed Addressing Mode
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Content of Index Register + Address part of the instruction
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Base Register Addressing Mode
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Effective Address  = Content of Base Register + Address part of the instruction

Base Register Addressing Mode
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Content of Base Register + Address part of the instruction
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Auto-Increment Addressing Mode
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Increment Addressing Mode
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Auto-Decrement Addressing Mode
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Decrement Addressing Mode
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Addressing Modes

Immediate Addressing 
Mode To initialize registers to a constant value

Direct Addressing Mode 
and Register Direct 
Addressing Mode

To access static data & To 

Indirect Addressing Mode 
and Register Indirect 
Addressing Mode

To implement pointers because pointers are memory locations that store the 
address of another variable
To pass array as a parameter 
pointer is needed to point the address

Relative Addressing Mode
For program relocation at run time i.e. for position independent code
To change the normal sequence of execution of instructions
For branch type instructions 
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Applications

registers to a constant value

To implement variables

because pointers are memory locations that store the 
address of another variable

array as a parameter because array name is the base address and 
pointer is needed to point the address

For program relocation at run time i.e. for position independent code
To change the normal sequence of execution of instructions

branch type instructions since it directly updates the program counter
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Addressing Modes

Index Addressing 
Mode

For array implementation or array addressing
For records implementation

Base Register 
Addressing Mode

For writing relocatable code i.e. for relocation of program in memory 
even at run time
For handling recursive procedures

Auto-increment & 
Auto-decrement 
Addressing Mode

For implementing loops , 
For implementing a stack as push and pop
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Applications
array implementation or array addressing

implementation

For writing relocatable code i.e. for relocation of program in memory 

procedures

loops , For stepping through arrays in a loop
For implementing a stack as push and pop
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Assembly language

• Assembly language is a type of

communicates with the hardware

• Hardware from different manufacturers

like binary or hexadecimal characters,
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Assembly language

of programming language that

of a computer.

manufacturers uses machine language,

characters, to perform tasks.
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Assembly language
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Assignment Statement is f = (g + h) 
What is the compiled MIPS code?

f, g ,h, i, j is assigned to r0, r1, r2, r3, r4
Temp register r5 ,r6

Assembly language
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= (g + h) - (i + j)

, r1, r2, r3, r4 add  r5, r1, r2
add  r6, r3, r4 
sub  r0, r5, r6
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Assembly language
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Convert the following C Language into MIPS Assembly Language 
A[30] = h+ A[30]

lw $t0, 32($s4)    # load word

sw $t0, 32($s4)    # store word

Assembly language
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Convert the following C Language into MIPS Assembly Language 

$t0, 32($s4)    # load word
add $t0, $s2, $t0

$t0, 32($s4)    # store word
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Assignment statement is
g= h + A[8];
A[12]= h + A[8];

Index

lw $t0, 32($s3)    # load word
add $t0, $s2, $t0

sw $t0, 48($s3)    # store word
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Index 8 requires offset of 32

lw $t0, 8($s3)    # load word
add $s1, $s2, $t0

$t0, 32($s3)    # load word
add $t0, $s2, $t0

$t0, 48($s3)    # store word
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TEXT BOOK
Carl Hamacher, Zvonko Vranesic and Safwat Zaky
Edition 2012.

1. David A. Patterson and John L. Hennessey, “Computer organization and design”, 

2. William Stallings, “Computer Organization and Architecture designing for Performance”, Pearson Education 8th Edition, 2010

3. John P.Hayes, “Computer Architecture and Organization”, McGraw Hill, 3rd Edition, 2002

4. M. Morris R. Mano “Computer System Architecture” 3rd Edition 2007

5. David A. Patterson “Computer Architecture: A Quantitative Approach”, Morgan Kaufmann; 5th edition 2011 
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THANK YOU
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