
UNIT I
BASIC STRUCTURE OF COMPUTERS
Functional units – Basic operational
Performance – Memory locations
operations – Instruction and Instruction
modes – Assembly language
Architecture.

UNIT I
BASIC STRUCTURE OF COMPUTERS

operational concepts – Bus Structures –
locations and addresses – Memory

Instruction sequencing – Addressing
– Case study : RISC and CISC

Recall the previous class concepts

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

Recall the previous class concepts

30-08-2022

2/23

Addressing modes
• The different ways of specifying the location

as addressing modes.

• Starting address of memory segment.

• Effective address or Offset: An offset is determined by adding any combination of three

address elements: displacement, base and index.

• Displacement: It is an 8 bit or 16 bit immediate value given in the instruction.

• Base: Contents of base register, BX or BP.

• Index: Content of index register SI or DI.

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

Addressing modes
location of an operand in an instruction are called

: An offset is determined by adding any combination of three

displacement, base and index.

It is an 8 bit or 16 bit immediate value given in the instruction.

30-08-2022

3/23

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

1. Implied / Implicit Addressing Mode
2. Stack Addressing Mode
3. Immediate Addressing Mode
4. Direct Addressing Mode
5. Indirect Addressing Mode
6. Register Direct Addressing Mode
7. Register Indirect Addressing Mode
8. Relative Addressing Mode
9. Indexed Addressing Mode
10. Base Register Addressing Mode
11. Auto-Increment Addressing Mode
12. Auto-Decrement Addressing Mode

Types of Addressing

30-08-2022

Implied / Implicit Addressing Mode

Register Direct Addressing Mode
Register Indirect Addressing Mode

Base Register Addressing Mode
Increment Addressing Mode
Decrement Addressing Mode

4/23Types of Addressing modes

Implied / Implicit Addressing Mode

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

Implied / Implicit Addressing Mode

30-08-2022

5/23

Stack Addressing Mode

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

Stack Addressing Mode

30-08-2022

6/23

Immediate Addressing Mode

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

Immediate Addressing Mode

30-08-2022

7/23

Direct Addressing Mode

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

ADD X will increment the value stored

memory location X.

AC ← AC +

Direct Addressing Mode

30-08-2022

stored in the accumulator by the value stored

+ [X]

8/23

Indirect Addressing Mode

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

Indirect Addressing Mode

30-08-2022

ADD X will increment the value stored

in the accumulator by the value stored

at memory location specified by X.

AC ← AC + [[X]]

9/23

Register Direct Addressing Mode

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

Register Direct Addressing Mode

30-08-2022

ADD R will increment the value

stored in the accumulator by the

content of register R.

AC ← AC + [R]

10/23

Register Indirect Addressing Mode

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

ADD R will increment the value stored in the accumulator by the

content of memory location specified in register R.
AC ← AC + [[R]]

Register Indirect Addressing Mode

30-08-2022

ADD R will increment the value stored in the accumulator by the

content of memory location specified in register R.
AC ← AC + [[R]]

11/23

Relative Addressing Mode

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

Effective Address = Content of Program Counter +

Relative Addressing Mode

30-08-2022

Content of Program Counter + Address part of the instruction

12/23

Indexed Addressing Mode

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

Effective Address = Content of Index Register + Address part of the instruction

Indexed Addressing Mode

30-08-2022

Content of Index Register + Address part of the instruction

13/23

Base Register Addressing Mode

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

Effective Address = Content of Base Register + Address part of the instruction

Base Register Addressing Mode

30-08-2022

Content of Base Register + Address part of the instruction

14/23

Auto-Increment Addressing Mode

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

Increment Addressing Mode

30-08-2022

15/23

Auto-Decrement Addressing Mode

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

Decrement Addressing Mode

30-08-2022

16/23

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

Addressing Modes

Immediate Addressing
Mode To initialize registers to a constant value

Direct Addressing Mode
and Register Direct
Addressing Mode

To access static data & To

Indirect Addressing Mode
and Register Indirect
Addressing Mode

To implement pointers because pointers are memory locations that store the
address of another variable
To pass array as a parameter
pointer is needed to point the address

Relative Addressing Mode
For program relocation at run time i.e. for position independent code
To change the normal sequence of execution of instructions
For branch type instructions

30-08-2022

Applications

registers to a constant value

To implement variables

because pointers are memory locations that store the
address of another variable

array as a parameter because array name is the base address and
pointer is needed to point the address

For program relocation at run time i.e. for position independent code
To change the normal sequence of execution of instructions

branch type instructions since it directly updates the program counter

17/23

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

Addressing Modes

Index Addressing
Mode

For array implementation or array addressing
For records implementation

Base Register
Addressing Mode

For writing relocatable code i.e. for relocation of program in memory
even at run time
For handling recursive procedures

Auto-increment &
Auto-decrement
Addressing Mode

For implementing loops ,
For implementing a stack as push and pop

30-08-2022

Applications
array implementation or array addressing

implementation

For writing relocatable code i.e. for relocation of program in memory

procedures

loops , For stepping through arrays in a loop
For implementing a stack as push and pop

18/23

Assembly language

• Assembly language is a type of

communicates with the hardware

• Hardware from different manufacturers

like binary or hexadecimal characters,

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

Assembly language

of programming language that

of a computer.

manufacturers uses machine language,

characters, to perform tasks.

30-08-2022

19/23

Assembly language

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

Assignment Statement is f = (g + h)
What is the compiled MIPS code?

f, g ,h, i, j is assigned to r0, r1, r2, r3, r4
Temp register r5 ,r6

Assembly language

30-08-2022

= (g + h) - (i + j)

, r1, r2, r3, r4 add r5, r1, r2
add r6, r3, r4
sub r0, r5, r6

20/23

Assembly language

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

Convert the following C Language into MIPS Assembly Language
A[30] = h+ A[30]

lw $t0, 32($s4) # load word

sw $t0, 32($s4) # store word

Assembly language

30-08-2022

Convert the following C Language into MIPS Assembly Language

$t0, 32($s4) # load word
add $t0, $s2, $t0

$t0, 32($s4) # store word

21/23

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

Assignment statement is
g= h + A[8];
A[12]= h + A[8];

Index

lw $t0, 32($s3) # load word
add $t0, $s2, $t0

sw $t0, 48($s3) # store word

30-08-2022

Index 8 requires offset of 32

lw $t0, 8($s3) # load word
add $s1, $s2, $t0

$t0, 32($s3) # load word
add $t0, $s2, $t0

$t0, 48($s3) # store word

22/23

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA 30-08-2022

23/23

30-08-2022

TEXT BOOK
Carl Hamacher, Zvonko Vranesic and Safwat Zaky
Edition 2012.

1. David A. Patterson and John L. Hennessey, “Computer organization and design”,

2. William Stallings, “Computer Organization and Architecture designing for Performance”, Pearson Education 8th Edition, 2010

3. John P.Hayes, “Computer Architecture and Organization”, McGraw Hill, 3rd Edition, 2002

4. M. Morris R. Mano “Computer System Architecture” 3rd Edition 2007

5. David A. Patterson “Computer Architecture: A Quantitative Approach”, Morgan Kaufmann; 5th edition 2011

REFERENCES

Zaky, “Computer Organization”, McGraw-Hill, 6th

1. David A. Patterson and John L. Hennessey, “Computer organization and design”, MorganKauffman ,Elsevier, 5th edition, 2014.

2. William Stallings, “Computer Organization and Architecture designing for Performance”, Pearson Education 8th Edition, 2010

, “Computer Architecture and Organization”, McGraw Hill, 3rd Edition, 2002

“Computer System Architecture” 3rd Edition 2007

5. David A. Patterson “Computer Architecture: A Quantitative Approach”, Morgan Kaufmann; 5th edition 2011

THANK YOU

Dr.B.Anuradha / ASP / CSE / SEM 2 / COA

