
24/07/17	

1	

2	

Lecture 6: NUMBER REPRESENTATION

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

2	

Number	System:	The	Basics	
•  We	are	accustomed	to	the	so-called	decimal	number	system.	

–  Ten	digits	::		0,1,2,3,4,5,6,7,8,9	
–  Every	digit	posiFon	has	a	weight	which	is	a	power	of	10.	
–  Base	or	radix	is	10.	

•  Examples:	
234								=		2	x	102		+		3	x	101		+		4	x	100	

250.67			=		2	x	102		+		5	x	101		+		0	x	100		+		6	x	10-1	+		7	x	10-2	

2	

2	

Binary	Number	System	

•  Two	digits:	0	and	1.	
–  Every	digit	posiFon	has	a	weight	that	is	a	power	of	2.				
–  Base	or	radix	is	2.	

•  Examples:	
110						=		1	x	22		+		1	x	21		+		0	x	20	

101.01	=		1	x	22		+		0	x	21		+		1	x	20		+		0	x	2-1		+		1	x	2-2	

	

3	 2	

Binary	to	Decimal	Conversion	

•  Each	digit	posiFon	of	a	binary	number	has	a	weight.	
–  Some	power	of	2.	

•  A	binary	number:	
							B	=		bn-1	bn-2	…..b1	b0	.	b-1	b-2	…..	b-m	
where	bi	are	the	binary	digits.	

				Corresponding	value	in	decimal:	
						D	=			Σ				bi	2i	

4	

i	=	-m		

n-1		

2	

Some	Examples	

1.  101011		è		1x25	+	0x24	+	1x23	+	0x22	+	1x21	+	1x20			=	43	
	 	(101011)2	=	(43)10	

	
2.  .0101						è		0x2-1	+	1x2-2	+	0x2-3	+	1x2-4				=	.3125	

	 	(.0101)2	=	(.3125)10	
	
3.  101.11				è		1x22	+	0x21	+	1x20	+	1x2-1	+	1x2-2			=		5.75	

	 	(101.11)2	=	(5.75)10	

5	 2	

Decimal	to	Binary	Conversion	
•  Consider	the	integer	and	fracFonal	parts	separately.	
•  For	the	integer	part:	

–  Repeatedly	divide	the	given	number	by	2,	and	go	on	accumulaFng	the	
remainders,	unFl	the	number	becomes	zero.	

–  Arrange	the	remainders	in	reverse	order.	
•  For	the	fracFonal	part:	

–  Repeatedly	mulFply	the	given	fracFon	by	2.	
•  Accumulate	the	integer	part	(0	or	1).	
•  If	the	integer	part	is	1,	chop	it	off.	

–  Arrange	the	integer	parts	in	the	order	they	are	obtained.	

6	

24/07/17	

2	

2	

Examples	

7	

2 					239	
2					119				---	1	
2 							59				---	1	
2							29				---	1	
2 							14				---	1	
2									7				---	0	
2 									3				---	1	
2									1				---	1	
2									0				---	1	

(239)10	=	(11101111)2	

2 						64	
2						32				---	0	
2 						16				---	0	
2								8				---	0	
2 								4				---	0	
2								2				---	0	
2 								1				---	0	
2								0				---	1	
	
(64)10	=	(1000000)2	

.634		x		2			=			1.268	

.268		x		2			=			0.536	

.536		x		2			=			1.072	

.072		x		2			=			0.144	

.144		x		2			=			0.288	
								:	
									(.634)10	=	(.10100……)2	

37.0625	

(37)10		=		(100101)2	

(.0625)10		=		(.0001)2	
	

∴(37.0625)10		=		

									(100101	.	0001)2	

2	

Hexadecimal	Number	System	

•  A	compact	way	to	represent	
binary	numbers.	
–  Group	of	four	binary	digits	are	

represented	by	a	hexadecimal	
digit.	

–  Hexadecimal	digits	are	0	to	9,	
A	to	F.	

8	

Hex	 Binary	 Hex	 Binary	
0	 0000	 8	 1000	

1	 0001	 9	 1001	

2	 0010	 A	 1010	

3	 0011	 B	 1011	

4	 0100	 C	 1100	

5	 0101	 D	 1101	

6	 0110	 E	 1110	

7	 0111	 F	 1111	

2	

Binary	to	Hexadecimal	Conversion	

•  For	the	integer	part:	
–  Scan	the	binary	number	from	right	to	le6.	
–  Translate	each	group	of	four	bits	into	the	corresponding	hexadecimal	digit.	

•  Add	leading	zeros	if	necessary.	

•  For	the	fracFonal	part:	
–  Scan	the	binary	number	from	le6	to	right.	
–  Translate	each	group	of	four	bits	into	the	corresponding	hexadecimal	digit.	

•  Add	trailing	zeros	if	necessary.	

9	 2	

Examples	

1.  (1011	0100	0011)2			=			(B43)16	

2.  (10	1010	0001)2							=			(2A1)16	

3.  (.1000	010)2													=			(.84)16	

4.  (101	.	0101	111)2					=			(5.5E)16	

10	

A	trailing	0	is	added	

A	leading	0	and	trailing	0	
are	added	

Two	leading	0s	are	added	

2	

Hexadecimal	to	Binary	Conversion	

•  Translate	every	hexadecimal	digit	into	its	4-bit	binary	equivalent.	
•  Examples:	

				(3A5)16						=			(0011	1010	0101)2	
				(12.3D)16			=			(0001	0010	.	0011	1101)2	
				(1.8)16								=			(0001	.	1000)2	

11	 2	

How	are	Hexadecimal	Numbers	WriPen?	

•  Using	the	suffix	“H”	or	using	the	prefix	“0x”.	

•  Examples:	
–  ADDI			R1,2AH									//	Add	the	hex	number	2A	to	register	R1	
–  0x2AB4																					//	The	16-bit	number	0010	1010	1011	0100	
–  0xFFFFFFFF														//	The	32-bit	number	for	the	all-1	string	

12	

24/07/17	

3	

2	

Unsigned	Binary	Numbers	

•  An	n-bit	binary	number	can	have	2n	disFnct	combinaFons.	
–  For	example,	for	n=3,	the	8	disFnct	combinaFons	are:	
					000,	001,	010,	011,	100,	101,	110,	111				(0	to	23-1	=	7	in	decimal).	

13	

Number	of	bits	(n)	 Range	of	Numbers	

8	 0	to	28-1	(255)	

16	 0	to	216-1	(65535)	

32	 0	to	232-1	(4294967295)	

64	 0	to	264-1		

2	

•  An	n-bit	binary	integer:			
																						bn-1bn-2	…	b2b1b0	

•  Equivalent	unsigned	decimal	value:	

																						D		=		bn-12n-1	+		bn-22n-2	+	…	+	b222	+		b121	+		b020	

•  Each	digit	posiFon	has	a	weight	that	is	some	power	of	2.	
	

14	

2	

Signed	Integer	RepresentaWon	

•  Many	of	the	numerical	data	items	that	are	used	in	a	program	
are	signed	(posiFve	or	negaFve).	
–  QuesFon::	How	to	represent	sign?	

•  Three	possible	approaches:	
a)  Sign-magnitude	representaFon	
b)  One’s	complement	representaFon	
c)  Two’s	complement	representaFon	

	
15	 2	

(a)	Sign-magnitude	Representa3on	
•  For	an	n-bit	number	representaFon:	

–  The	most	significant	bit	(MSB)	indicates	sign	(0:	posiFve,	1:	negaFve).	
–  The	remaining	(n-1)	bits	represent	the	magnitude	of	the	number.	

•  Range	of	numbers:	–	(2n-1	–	1)		to		+	(2n-1	–	1)	

	
•  A	problem:		Two	different	representaFons	for	zero.	

		+0:		0	00..000		and	-0:	1	00..000	

16	

b0	b1	bn-2	bn-1	

Magnitude	Sign	

2	

(b)	Ones	Complement	Representa3on	

•  Basic	idea:	
–  PosiFve	numbers	are	represented	exactly	as	in	sign-magnitude	form.	
–  NegaFve	numbers	are	represented	in	1’s	complement	form.	

•  How	to	compute	the	1’s	complement	of	a	number?	
–  Complement	every	bit	of	the	number	(1à0	and	0à1).	
–  MSB	will	indicate	the	sign	of	the	number	(0:	posiFve,	1:	negaFve).	

17	 2	18	

Decimal	 1’s	
complement	

Decimal	 1’s	
complement	

+0	 0000	 -7	 1000	

+1	 0001	 -6	 1001	

+2	 0010	 -5	 1010	

+3	 0011	 -4	 1011	

+4	 0100	 -3	 1100	

+5	 0101	 -2	 1101	

+6	 0110	 -1	 1110	

+7	 0111	 -0	 1111	

Example	for	n=4	

To	find	the	representaFon	of,	
say,	-4,	first	note	that	

								+4		=		0100	

								-4			=		1’s	complement	of		
																			0100		=		1011	

24/07/17	

4	

2	

•  Range	of	numbers	that	can	be	represented	in	1’s	complement:	
					Maximum		::		+	(2n-1	–	1)	
					Minimum			::		-	(2n-1	–	1)	

•  A	problem:	
					Two	different	representaFons	of	zero.	

				+0			à			0	000….0	
					-0			à			1	111….1	

•  Advantage	of	1’s	complement	representaFon:	
–  SubtracFon	can	be	done	using	addiFon.	
–  Leads	to	substanFal	saving	in	circuitry.	

19	 2	

(c)	Twos	Complement	Representa3on	

•  Basic	idea:	
–  PosiFve	numbers	are	represented	exactly	as	in	sign-magnitude	form.	
–  NegaFve	numbers	are	represented	in	2’s	complement	form.	

•  How	to	compute	the	2’s	complement	of	a	number?	
–  Complement	every	bit	of	the	number	(1à0	and	0à1),	and	then						

add	one	to	the	resulFng	number.	
–  MSB	will	indicate	the	sign	of	the	number	(0:	posiFve,	1:	negaFve).	

				

20	

2	21	

Decimal	 2’s	
complement	

Decimal	 2’s	
complement	

+0	 0000	 -8	 1000	

+1	 0001	 -7	 1001	

+2	 0010	 -6	 1010	

+3	 0011	 -5	 1011	

+4	 0100	 -4	 1100	

+5	 0101	 -3	 1101	

+6	 0110	 -2	 1110	

+7	 0111	 -1	 1111	

Example	for	n=4	

To	find	the	representaFon	of,	
say,	-4,	first	note	that	

								+4		=		0100	

								-4			=		2’s	complement	of		
																			0100		=		1011	+	1	
																														=		1100	

2	

•  Range	of	numbers	that	can	be	represented	in	2’s	complement:	
					Maximum		::		+	(2n-1	–	1)	
					Minimum			::		-	2n-1	

•  Advantage	of	2’s	complement	representaFon:	
–  Unique	representaFon	of	zero.	
–  SubtracFon	can	be	done	using	addiFon.	
–  Leads	to	substanFal	saving	in	circuitry.	

•  Almost	all	computers	today	use	2’s	complement	representaFon	for	storing	
negaFve	numbers.	

22	

2	

•  Some	other	features	of	2’s	complement	representaFon	
a)  Weighted	number	representaFon,	with	the	MSB	having	weight	-2n-1.	

															D		=			-bn-12n-1	+		bn-22n-2	+	…	+	b222	+		b121	+		b020				

b)  Shik	lek	by	k	posiFons	with	zero	padding	mulFplies	the	number	by	2k.	

23	

b0	b1	bn-2	bn-1	

20	21	2n-2	-2n-1	

00010011	=	+19		::	Shik	lek	by	2	::	01001100	=	+76	

11100011	=	-29		::	Shik	lek	by	2	::	10001100	=	-116	

2	

c)  Shik	right	by	k	posiFons	with	sign	bit	padding	divides	the	number	by	2k.	

d)  The	sign	bit	can	be	copied	as	many	Fmes	as	required	in	the	beginning	to	
extend	the	size	of	the	number	(called	sign	extension).	

24	

00010110	=	+22		::	Shik	right	by	2	::	00000101	=	+5	

11100100	=	-28		::	Shik	right	by	2	::	11111001	=	-7	

X	=	00101111		(8-bit	number,	value	=	+47)	
Sign	extend	to	32	bits:	
		00000000	00000000	00000000	00101111	

X	=	10100011		(8-bit	number,	value	=	-93)	
Sign	extend	to	32	bits:	
		11111111	11111111	11111111	10100011	

24/07/17	

5	

2	

END	OF	LECTURE	6	

25	 2	

Lecture 7: INSTRUCTION FORMAT AND ADDRESSING MODES

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

2	

InstrucWon	Format	
•  An	instrucFon	consists	of	two	parts:-	

a)  OperaFon	Code	or	Opcode	
•  Specifies	the	operaFon	to	be	performed	by	the	instrucFon.	
•  Various	categories	of	instrucFons:	data	transfer,	arithmeFc	and	logical,	
control,	I/O	and	special	machine	control.	

b)  Operand(s)	
•  Specifies	the	source(s)	and	desFnaFon	of	the	operaFon.	
•  Source	operand	can	be	specified	by	an	immediate	data,	by	naming	a	

register,	or	specifying	the	address	of	memory.	
•  DesFnaFon	can	be	specified	by	a	register	or	memory	address.	

27	 2	

•  Number	of	operands	varies	from	instrucFon	to	instrucFon.	
•  Also	for	specifying	an	operand,	various	addressing	modes	are	

possible:	
–  Immediate	addressing	
–  Direct	addressing	
–  Indirect	addressing	
–  RelaFve	addressing	
–  Indexed	addressing,	and	many	more.	

28	

2	29	

register	

opcode	

opcode	

opcode	

opcode	

opcode	 memory	address	

memory	address	memory	address	

memory	address	

register	 register	 register	

Implied	addressing:		NOP,		HALT	

1-address:		ADD			X,			LOAD		M	

Register-memory:		ADD			R1,X	

Register-register:		ADD			R1,R2,R3	

2-address:		ADD			X,Y	

InstrucWon	Format	Examples	

2	

A	32-bit	InstrucWon	Example	

•  Suppose	we	have	an	ISA	with	32-bit	instrucFons	only.	
–  Fixed	size	instrucFons	make	the	decoding	easier.	

•  Some	instrucFon	encoding	examples	are	shown.	
–  Assume	that	there	are	32	registers	R0	to	R31,	all	of	32-bits.	
–  5-bits	are	required	to	specify	a	register.	

30	

24/07/17	

6	

2	31	

opcode	 dest	 source	 16-bit	immediate	data	

31	 0	16	 15	20	25	 21	26	
LOAD				R11,100(R2)	
							::		R11	=	Mem(R2+100)	

opcode	 dest	 source	 ALU	funcFon	

31	 0	16	 15	20	25	 21	26	

source	

10	11	
ADD				R2,R5,R8	
							::		R2	=	R5	+	R8	

01011	 00010	 0000000001100100	LOAD	

00010	 00101	 01000	ALU	op	 ADD	

2	

ADDRESSING	MODES	

32	

2	

What	are	Addressing	Modes?	
•  They	specify	the	mechanism	by	which	the	operand	data	can	be	located.	
•  Some	ISA’s	are	quite	complex	and	supports	many	addressing	modes.	
•  ISA’s	based	on	load-store	architecture	are	usually	simple	and	support	very	

limited	number	of	addressing	modes.	
•  Various	addressing	modes	exist:	

–  Immediate,	Direct,	Indirect,	Register,	Register	Indirect,	Indexed,	Stack,	RelaFve,	
Autoincrement,	Autodecrement,	Based,	etc.	

–  Not	all	processors	support	all	addressing	modes.	
–  We	shall	briefly	look	at	the	common	addressing	modes	and	how	they	work.	

33	 2	

Immediate	Addressing	

•  The	operand	is	part	of	the	instrucFon	itself.	
–  No	memory	reference	is	required	to	access	the	operand.	
–  Fast	but	limited	range	(because	a	limited	number	of	bits	are	provided	to	specify	

the	immediate	data).	

•  Examples:	
–  ADD				#25															//	ACC	=	ACC	+	25	
–  ADDI			R1,R2,42						//		R1	=	R2	+	42	

34	

opcode	 immediate	data	

2	

Direct	Addressing	

•  The	instrucFon	contains	a	field	that	holds	the	memory	address	of	the	
operand.	

•  Examples:	
–  ADD			R1,20A6H 	//	R1	=	R1	+	Mem[20A6]	

•  Single	memory	access	is	required	to	access	the	operand.	
–  No	addiFonal	calculaFons	required	to	determine	the	operand	address.	
–  Limited	address	space	(as	number	of	bits	is	limited,	say,	16	bits).	

35	

opcode	 operand	address	

2	36	

opcode	 operand	address	

operand	

Memory	

24/07/17	

7	

2	

Indirect	Addressing	

•  The	instrucFon	contains	a	field	that	holds	the	memory	address,	which	in	
turn	holds	the	memory	address	of	the	operand.	

•  Two	memory	accesses	are	required	to	get	the	operand	value.	
•  Slower	but	can	access	large	address	space.	

–  Not	limited	by	the	number	of	bits	in	operand	address	like	direct	addressing.	

•  Examples:	
–  ADD			R1,(20A6H) 	//	R1	=	R1	+	(Mem[20A6])	

37	 2	38	

opcode	 operand	address	

pointer	

Memory	

operand	

2	

Register	Addressing	

•  The	operand	is	held	in	a	register,	and	the	instrucFon	specifies	the	register	
number.	
–  Very	few	number	of	bits	needed,	as	the	number	of	registers	is	limited.	
–  Faster	execuFon,	since	no	memory	access	is	required	for	getng	the	operand.	

•  Modern	load-store	architectures	support	large	number	of	registers.	
•  Examples:	

–  ADD			R1,R2,R3 	//	R1	=	R2	+	R3	
–  MOV		R2,R5 	//	R2	=	R5	

39	 2	40	

opcode	 register	no	

operand	

Register	Bank	

2	

Register	Indirect	Addressing	

•  The	instrucFon	specifies	a	register,	and	the	register	holds	the	memory	
address	where	the	operand	is	stored.	
–  Can	access	large	address	space.	
–  One	fewer	memory	access	as	compared	to	indirect	addressing.	

•  Example:	
–  ADD			R1,(R5) 	//	PC	=	R1	+	Mem[R5]	

41	 2	42	

opcode	 register	no	

Register	Bank	

operand	

Memory	

24/07/17	

8	

2	

RelaWve	Addressing	(PC	RelaWve)	

•  The	instrucFon	specifies	an	offset	of	displacement,	which	is	added	to	the	
program	counter	(PC)	to	get	the	effecFve	address	of	the	operand.	
–  Since	the	number	of	bits	to	specify	the	offset	is	limited,	the	range	of	relaFve	

addressing	is	also	limited.	
–  If	a	12-bit	offset	is	specified,	it	can	have	values	ranging	from	-2048	to	+2047.	

43	

opcode	 offset	

PC	

ADDER	
operand	

Memory	

2	

Indexed	Addressing	
•  Either	a	special-purpose	register,	or	a	general-purpose	register,	is	used	as	

index	register	in	this	addressing	mode.	
•  The	instrucFon	specifies	an	offset	of	displacement,	which	is	added	to	the	

index	register	to	get	the	effecFve	address	of	the	operand.	
•  Example:	

–  LOAD			R1,1050(R3) 	//	R1	=	Mem[1050+R3]	

•  Can	be	used	to	sequenFally	access	the	elements	of	an	array.	
–  Offset	gives	the	starFng	address	of	the	array,	and	the	index	register	value	

specifies	the	array	element	to	be	used.	

44	

2	45	

opcode	 index	reg	

Register	Bank	

offset	

operand	

Memory	

ADDER	

2	

Stack	Addressing	

•  Operand	is	implicitly	on	top	of	the	stack.	
•  Used	in	zero-address	machines	earlier.	
•  Examples:	

–  ADD	
–  PUSH			X	
–  POP					X	

•  Many	processors	have	a	special	register	called	the	stack	pointer	(SP)	that	
keeps	track	of	the	stack-top	in	memory.	
–  PUSH,	POP,	CALL,	RET	instrucFons	automaFcally	modify	SP.	

46	

2	

Some	Other	Addressing	Modes	

•  Base	addressing	
–  The	processor	has	a	special	register	called	the	base	register	or	segment	register.	
–  All	operand	addresses	generated	are	added	to	the	base	register	to	get	the	final	

memory	address.	
–  Allows	easy	movement	of	code	and	data	in	memory.	

•  Autoincrement	and	Autodecrement	
–  First	introduced	in	the	PDP-11	computer	system.	
–  The	register	holding	the	operand	address	is	automaFcally	incremented	or	

decremented	aker	accessing	the	operand		(like	a++	and	a--	in	C).	

47	 2	

END	OF	LECTURE	7	

48	

24/07/17	

9	

2	

Lecture 8: CISC AND RISC ARCHITECTURE

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

2	

Broad	ClassificaWon	

•  Computer	architectures	have	evolved	over	the	years.	
–  Features	that	were	developed	for	mainframes	and	supercomputers	in	

the	1960s	and	1970s	have	started	to	appear	on	a	regular	basis	on	later	
generaFon	microprocessors.	

•  Two	broad	classificaFons	of	ISA:	
a)  Complex	InstrucFon	Set	Computer	(CISC)	
b)  Reduced	InstrucFon	Set	Computer	(RISC)	

50	

2	

CISC	versus	RISC	Architectures	
•  Complex	InstrucFon	Set	Computer	(CISC)	

–  More	tradiFonal	approach.	
–  Main	features:	

•  Complex	instrucFon	set	
•  Large	number	of	addressing	modes	(R-R,	R-M,	M-M,	indexed,	indirect,	etc.)	
•  Special-purpose	registers	and	Flags	(sign,	zero,	carry,	overflow,	etc.)	
•  Variable-length	instrucFons	/	Complex	instrucFon	encoding	
•  Ease	of	mapping	high-level	language	statements	to	machine	instrucFons	
•  InstrucFon	decoding	/	control	unit	design	more	complex	
•  Pipeline	implementaFon	quite	complex	

51	 2	

–  CISC	Examples:	
•  IBM	360/370	 	 	(1960-70)	
•  VAX-11/780 	 	(1970-80)	
•  Intel	x86	/	PenFum 	(1985-present)	

52	

Only	CISC	instrucFon	set	that	survived	over	generaFons.	
•  Desktop	PC’s	/	Laptops	use	these.	
•  The	volume	of	chips	manufactured	is	so	high	that	there	is	

enough	moFvaFon	to	pay	the	extra	design	cost.	
•  Sufficient	hardware	resources	available	today	to	translate	

from	CISC	to	RISC	internally.	

2	53	

Register	Set	
in	PenWum	

2	54	

Addressing	Mode	 Example	 Micro-operaWon	

Register	direct	 ADD			R1,R2	 R1	=	R1	+	R2	

Immediate	 ADD			R1,#15	 R1	=	R1	+	15	

Displacement	 ADD			R1,220(R5)	 R1	=	R1	+	Mem[220+R5]	

Register	indirect	 ADD			R1,(R3)	 R1	=	R1	+	Mem[R3]	

Indexed	 ADD			R1,(R2+R3)	 R1	=	R1	+	Mem[R2+R3]	

Direct	 ADD			R1,	(1000)	 R1	=	R1	+	Mem[1000]	

Memory	indirect	 ADD			R1,@(R4)	 R1	=	R1	+	Mem[Mem[R4]]	

Autoincrement	 ADD			R1,(R2)+	 R1	=	R1	+	Mem[R2];	R2++	

Autodecrement	 ADD			R1,(R2)-	 R1	=	R1	+	Mem[R2];	R2--	

Scaled	 ADD			R1,50(R2)[R3]	 R1	=	R1	+	Mem[50+R2+R3*d]	

Addressing	
Modes	in	

VAX	

24/07/17	

10	

2	

•  Reduced	InstrucFon	Set	Computer	(RISC)	
–  Very	widely	used	among	many	manufacturers	today.	
–  Also	referred	to	as	Load-Store	Architecture.	

•  Only	LOAD	and	STORE	instrucFons	access	memory.	
•  All	other	instrucFons	operate	on	processor	registers.	

–  Main	features:	
•  Simple	architecture	for	the	sake	of	efficient	pipelining.	
•  Simple	instrucFon	set	with	very	few	addressing	modes.	
•  Large	number	of	general-purpose	registers;	very	few	special-purpose.	
•  InstrucFon	length	and	encoding	uniform	for	easy	instrucFon	decoding.	
•  Compiler	assisted	scheduling	of	pipeline	for	improved	performance.	

55	 2	

–  RISC	Examples:	
•  CDC	6600 	(1964)	
•  MIPS	family 	(1980-90)	
•  SPARC	
•  ARM	microcontroller	family	

56	

•  Almost	all	the	computers	today	use	a	
RISC	based	pipeline	for	efficient	
implementaFon.	
•  RISC	based	computers	use	compilers	
to	translate	into	RISC	instrucFons.	

•  CISC	based	computers	(e.g.	x86)	use	
hardware	to	translate	into	RISC	
instrucFons.	

2	

Results	of	a	ComparaWve	Study	

•  A	quanFtaFve	comparison	of	VAX	8700	(a	CISC	machine)		and	MIPS	M2000	(a	
RISC	machine)	with	comparable	organizaFons	was	carried	out	in	1991.	

•  Some	findings:	
–  MIPS	required	execuFon	of	about	twice	the	number	of	instrucFons	as	compared	

to	VAX.	
–  Cycles	Per	InstrucFons	(CPI)	for	VAX	was	about	six	Fmes	larger	than	that	of	MIPS.	
–  Hence,	MIPS	had	three	Fmes		the	performance	of	VAX.	
–  Also,	much	less	hardware	is	required	to	build	MIPS	as	compared	to	VAX.	

57	 2	

•  Conclusion:	
–  PersisFng	with	CISC	architecture	is	too	costly,	both	in	terms	of	hardware	cost	

and	also	performance.	
–  VAX	was	replaced	by	ALPHA	(a	RISC	processor)	by	Digital	Equipment	

CorporaFon	(DEC).	
–  CISC	architecture	based	on	x86	is	different.	

•  Because	of	huge	number	of	installed	base,	backward	compaFbility	of	
machine	code	is	very	important	from	commercial	point	of	view.	

•  They	have	adopted	a	balanced	view:	(a)	user’s	view	is	a	CISC	instrucFon	
set,	(b)	hardware	translates	every	CISC	instrucFon	into	an	equivalent	set	
of	RISC	instrucFons	internally,	(c)	an	instrucFon	pipeline	executes	the	RISC	
instrucFons	efficiently.	

58	

2	

MIPS32	Architecture:	A	Case	Study	
•  As	a	case	study	of	RISC	ISA,	we	shall	be	considering	the	MIPS32	

architecture.	
–  Look	into	the	instrucFon	set	and	instrucFon	encoding	in	detail.	
–  Design	the	data	path	of	the	MIPS32	architecture,	and	also	look	into	the	

control	unit	design	issues.	
–  Extend	the	basic	data	path	of	MIPS32	to	a	pipeline	architecture,	and	

discuss	some	of	the	issues	therein.	
	

59	 2	

MIPS32	CPU	Registers	

•  The	MIPS32	ISA	defines	the	following	CPU	registers	that	are	visible	to	the	
machine/assembly	language	programmer.	

a)  32,	32-bit	general	purpose	registers	(GPRs),	R0	to	R31.	
b)  A	special-purpose	32-bit	program	counter	(PC).	

•  Points	to	the	next	instrucFon	in	memory	to	be	fetched	and	executed.	
•  Not	directly	visible	to	the	programmer.	
•  Affected	only	indirectly	by	certain	instrucFons	(like	branch,	call,	etc.)	

c)  A	pair	of	32-bit	special-purpose	registers	HI	and	LO,	which	are	used	to	hold	
the	results	of	mulFply,	divide,	and	mulFply-accumulate	instrucFons.	

60	

24/07/17	

11	

2	

•  Some	common	registers	are	missing	in	MIPS32.	
–  Stack	Pointer	(SP)	register,	which	helps	in	maintaining	a	stack	in	main	

memory.	
•  Any	of	the	GPRs	can	be	used	as	the	stack	pointer.	
•  No	separate	PUSH,	POP,	CALL	and	RET	instrucFons.	

–  Index	Register	(IX),	which	helps	in	accessing	memory	words	sequenFally	
in	memory.	
•  Any	of	the	GPRs	can	be	used	as	an	index	register.	

–  Flag	registers	(like	ZERO,	SIGN,	CARRY,	OVERFLOW)	that	keeps	track	of	
the	results	of	arithmeFc	and	logical	operaFons.	
•  Maintains	flags	in	registers,	to	avoid	problems	in	pipeline	implementaFon.	

61	 2	62	

R0	
R1	
R2	
R3	
R4	
R5	

R30	
R31	

.	.	.	

0	31	

General	Purpose	Registers	

HI	
LO	

PC	

31	 0	

31	 0	

Special	Purpose	Registers	

Two	of	the	GPRs	have	assigned	funcFons:	
a)  R0	is	hard-wired	to	a	value	of	zero.	

•  Can	be	used	as	the	target	register	for	
any	instrucFon	whose	result	is	to	be	
discarded.	

•  Can	also	be	used	as	a	source	when	a	
zero	value	is	needed.	

b)  R31	is	used	to	store	the	return	address	
when	a	funcFon	call	is	made.	
•  Used	by	the	jump-and-link	and	
branch-and-link	instrucFons	like	JAL,	
BLTZAL,	BGEZAL,	etc.	

•  Can	also	be	used	as	a	normal	register.	

2	

Some	Examples	

63	

ADD			R2,	R5,	R0							//	R2	=	R5	

LD									R4,	50(R3) 		//	R4	=	Mem[50+R3]	
ADD					R2,	R1,	R4					//	R2	=	R1	+	R4	
SD									54(R3),	R2				//	Mem[54+R3]	=	R2	

MAIN: 	ADDI 	R1,	R0,	35					//	R1	=	35	
	ADDI 	R2,	R0,	56					//	R2	=	56	
	JAL 	GCD	
	…..	

	
GCD: 	….. 	//	Find	GCD	of	R1	&	R2	
	

	JR 	R31	

2	

How	are	the	HI	and	LO	registers	used?	

•  During	a	mulFply	operaFon,	the	HI	and	LO	registers	store	the	product	of	an	
integer	mulFply.	
–  HI	denotes	the	high-order	32	bits,	and	LO	denotes	the	low-order	32	bits.	

•  During	a	mulFply-add	or	mulFply-subtract	operaFon,	the	HI	and	LO	registers	
store	the	result	of	the	integer	mulFply-add	or	mulFply-subtract.	

•  During	a	division,	the	HI	and	LO	registers	store	the	quoFent	(in	LO)	and	
remainder	(in	HI)	of	integer	divide.	

64	

2	

Some	MIPS32	Assembly	Language	ConvenWons	

•  The	integer	registers	of	MIPS32	can	be	accessed	as	R0..R31	or	r0..r31	in	an	
assembly	language	program.	

•  Several	assemblers	and	simulators	are	available	in	the	public	domain	(like	
QtSPIM)	that	follow	some	specific	convenFons.	
–  These	convenFons	have	become	like	a	de	facto	standard	when	we	write	

assembly	language	programs	for	MIPS32.	
–  Basically	some	alternate	names	are	used	for	the	registers	to	indicate	their	

intended	usage.	

65	 2	66	

Register	name	 Register	number	 Usage	

$zero	 R0	 Constant	zero	

Used	to	represent	the	constant	zero	
value,	wherever	required	in	a	program.	

24/07/17	

12	

2	67	

Register	name	 Register	number	 Usage	

$at	 R1	 Reserved	for	assembler	

May	be	used	as	temporary	register	
during	macro	expansion	by	assembler.	
•  Assembler	provides	an	extension	to	

the	MIPS32	instrucFon	set	that	are	
converted	to	standard	MIPS32	
instrucFons.	

Example:	Load	Address	instrucFon	used	to	
iniFalize	pointers	
	
la !R5,addr!

!

lui !$at,Upper-16-bits-of-addr!

ori !R5,$at,Lower-16-bits-of-addr!

2	68	

Register	name	 Register	number	 Usage	

$v0	 R2	 Result	of	funcFon,	or	for	expression	evaluaFon	

$v1	 R3	 Result	of	funcFon,	or	for	expression	evaluaFon	

May	be	used	for	up	to	two	funcFon	
return	values,	and	also	as	temporary	
registers	during	expression	evaluaFon.	

2	69	

Register	name	 Register	number	 Usage	

$a0	 R4	 Argument	1	

$a1	 R5	 Argument	2	

$a2	 R6	 Argument	3	

$a3	 R7	 Argument	3	

May	be	used	to	pass	up	to	four	
arguments	to	funcFons.	

2	70	

Register	name	 Register	number	 Usage	

$t0	 R8	 Temporary	(not	preserved	across	call)	

$t1	 R9	 Temporary	(not	preserved	across	call)	

$t2	 R10	 Temporary	(not	preserved	across	call)	

$t3	 R11	 Temporary	(not	preserved	across	call)	

$t4	 R12	 Temporary	(not	preserved	across	call)	

$t5	 R13	 Temporary	(not	preserved	across	call)	

$t6	 R14	 Temporary	(not	preserved	across	call)	

$t7	 R15	 Temporary	(not	preserved	across	call)	

$t8	 R24	 Temporary	(not	preserved	across	call)	

$t9	 R25	 Temporary	(not	preserved	across	call)	

May	be	used	as	temporary	variables	in	programs.	
These	registers	might	get	modified	when	some	
funcFons	are	called	(other	than	user-wri}en	
funcFons).	

2	71	

Register	name	 Register	number	 Usage	

$s0	 R16	 Temporary	(preserved	across	call)	

$s1	 R17	 Temporary	(preserved	across	call)	

$s2	 R18	 Temporary	(preserved	across	call)	

$s3	 R19	 Temporary	(preserved	across	call)	

$s4	 R20	 Temporary	(preserved	across	call)	

$s5	 R21	 Temporary	(preserved	across	call)	

$s6	 R22	 Temporary	(preserved	across	call)	

$s7	 R23	 Temporary	(preserved	across	call)	
May	be	used	as	temporary	variables	in	programs.	
These	registers	do	not	get	modified	across	
funcFon	calls.	

2	72	

Register	name	 Register	number	 Usage	

$gp	 R28	 Pointer	to	global	area	

$sp	 R29	 Stack	pointer	

$fp	 R30	 Frame	pointer	

$ra	 R31	 Return	address	(used	by	funcFon	call)	

These	registers	are	used	for	a	variety	of	pointers:	
•  Global	area:	points	to	the	memory	address	from	where	the	

global	variables	are	allocated	space.	
•  Stack	pointer:	points	to	the	top	of	the	stack	in	memory.	
•  Frame	pointer:	points	to	the	acFvaFon	record	in	stack.	
•  Return	address:	used	while	returning	from	a	funcFon.	

24/07/17	

13	

2	73	

Register	name	 Register	number	 Usage	

$k0	 R26	 Reserved	for	OS	kernel	

$k1	 R27	 Reserved	for	OS	kernel	

These	registers	are	supposed	to	be	used	by	the	OS	kernel	in	a	real	
computer	system.	
It	is	highly	recommended	not	to	use	these	registers.	

2	

END	OF	LECTURE	8	

74	

2	

Lecture 9: MIPS32 INSTRUCTION SET

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

2	

InstrucWon	Set	ClassificaWon	

•  MIPS32	instrucFon	can	be	classified	into	the	following	
funcFonal	groups:	
–  Load	and	Store	
–  ArithmeFc	and	Logical	
–  Jump	and	Branch	
–  Miscellaneous	
–  Coprocessor	instrucFon	(to	acOvate	an	auxiliary	processor).	

•  All	instrucFons	are	encoded	in	32	bits.	

76	

2	

Alignment	of	Words	in	Memory	
• MIPS	requires	that	all	words	
must	be	aligned	in	memory	to	
word	boundaries.	
–  Must	start	from	an	address	that	

is	some	power	of	4.	
–  Last	two	bits	of	the	address	must	

be	00.	
•  Allows	a	word	to	be	fetched	in	a	
single	cycle.	
–  Misaligned	words	may	require	

two	cycles.	

77	

w1	 w1	 w1	 w1	

w2	 w2	 w2	

w2	

w3	 w3	

w3	 w3	

w4	

w4	 w4	 w4	

0000H	

0004H	

0008H	

000CH	

0010H	

0014H	

0018H	

Address	

w1	is	aligned,	but	w2,	w3,	w4	are	not	

2	

(a)	Load	and	Store	InstrucWons	

•  MIPS32	is	a	load-store	architecture.	
–  All	operaFons	are	performed	on	operands	held	in	processor	registers.	
–  Main	memory	is	accessed	only	through	LOAD	and	STORE	instrucFons.	

•  There	are	various	types	of	LOAD	and	STORE	instrucFons,	each	used	for	a	
parFcular	purpose.	
a)  By	specifying	the	size	of	the	operand	(W:	word,	H:	half-word,	B:	byte)	

•  Examples:	LW,	LH,	LB,	SW,	SW,	SB	
b)  By	specifying	whether	the	operand	is	signed	(by	default)	or	unsigned.	

•  Examples:	LHU,	LBU	

78	

24/07/17	

14	

2	

c)  Accessing	fields	that	are	not	word	aligned.	
•  Examples:	LWL,	LWR,	SWL,	SWR	

d)  Atomic	memory	update	for	read-modify-write	instrucFons	
•  Examples:	LL,	SC	

79	 2	80	

Data	Size	 Load	Signed	 Load	Unsigned	 Store	

Byte	 YES	 YES	 YES	

Half-word	 YES	 YES	 YES	

Word	 YES	 Only	for	MIPS64	 YES	

Unaligned	word	 YES	 YES	

Linked	word	(atomic	modify)	 YES	 YES	

Data	sizes	that	can	be	accessed	through	LOAD	and	STORE	

2	81	

Type	 Mnemonic	 FuncWon	
	
	
	
	
	

Aligned	

LB	 Load	Byte	

LBU	 Load	Byte	Unsigned	

LH	 Load	Half-word	

LHU	 Load	Half-word	Unsigned	

LW	 Load	Word	

SB	 Store	Byte	

SH	 Store	Half-word	

SW	 Store	Word	

Type	 Mnemonic	 FuncWon	
	
	

Unaligned	

LWL	 Load	Word	Lek	

LWR	 Load	Word	Right	

SWL	 Store	Word	Lek	

SWR	 Store	Word	Right	

Atomic	
Update	

LL	 Load	Linked	Word	

SB	 Store	CondiFonal	
Word	

2	

(b)	ArithmeWc	and	Logic	InstrucWons	

•  All	arithmeFc	and	logic	instrucFons	operate	on	registers.	
•  Can	be	broadly	classified	into	the	following	categories:	

–  ALU	immediate	
–  ALU	3-operand	
–  ALU	2-operand	
–  Shik	
–  MulFply	and	Divide	

82	

2	83	

Type	 Mnemonic	 FuncWon	
	
	
	
	
	

16-bit	
Immediate	
Operand	

ADDI	 Add	Immediate	Word	

ADDIU	 Add	Immediate	Unsigned	Word	

ANDI	 AND	Immediate	

LUI	 Load	Upper	Immediate	

ORI	 OR	Immediate	

SLTI	 Set	on	Less	Than	Immediate	

SLTIU	 Set	on	Less	Than	Immediate	Unsigned	

XORI	 Exclusive-OR	Immediate	

2	84	

Type	 Mnemonic	 FuncWon	
	
	
	
	
	
	

3-Operand	

ADD	 Add	Word	

ADDU	 Add	Unsigned	Word	

AND	 Logical	AND	

NOR	 Logical	NOR	

SLT	 Set	on	Less	Than	

SLTU	 Set	on	Less	Than	Unsigned	

SUB	 Subtract	Word	

SUBU	 Subtract	Unsigned	Word	

XOR	 Logical	XOR	

24/07/17	

15	

2	85	

Type	 Mnemonic	 FuncWon	
	

2-Operand	
CLO	 Count	Leading	Ones	in	Word	

CLZ	 Count	Leading	Zeros	in	Word	

Type	 Mnemonic	 FuncWon	
	
	
	
	
	

Shie	

ROTR	 Rotate	Word	Right	

ROTRV	 Rotate	Word	Right	Variable	

SLL	 Shik	Word	Lek	Logical	

SLLV	 Shik	Word	Lek	Logical	Variable	

SRA	 Shik	Word	Right	ArithmeFc	

SRAV	 Shik	Word	Right	ArithmeFc	Variable	

SRL	 Shik	Word	Right	Logical	

SRLV	 Shik	Word	Right	Logical	Variable	

2	

(c)	MulWply	and	Divide	InstrucWons	
•  The	mulFply	and	divide	instrucFons	produce	twice	as	many	result	bits.	

–  When	two	32-bit	numbers	are	mulFplied,	we	get	a	64-bit	product.	
–  Aker	division,	we	get	a	32-bit	quoFent	and	a	32-bit	remainder.	

•  Results	are	produced	in	the	HI	and	LO	register	pair.	
a)  For	mulFplicaFon,	the	low	half	of	the	product	is	loaded	into	LO,	while	the	higher	

half	in	HI.	
b)  MulFply-Add	and	MulFply-Subtract	produce	a	64-bit	product,	and	adds	or	

subtracts	the	product	from	the	concatenated	value	of	HI	and	LO.		
c)  Divide	produces	a	quoFent	that	is	loaded	into	LO	and	a	remainder	that	is	loaded	

into	HI.	

86	

2	

•  Only	excepFon	is	the	MUL	instrucFon,	which	delivers	the	lower	half	of	the	
result	directly	to	a	GPR.	
–  Useful	is	situaFons	where	the	product	is	expected	to	fit	in	32	bits.	

87	 2	88	

Type	 Mnemonic	 FuncWon	
	
	
	
	
	
	
	

MulWply	
and	Divide	

DIV	 Divide	Word	

DIVU	 Divide	Unsigned	Word	

MADD	 MulFply	and	Add	Word	

MADDU	 MulFply	and	Add	Word	Unsigned	

MFHI	 Move	from	HI	

MFLO	 Move	from	LO	

MSUB	 MulFply	and	Subtract	Word	

MSUBU	 MulFply	and	Subtract	Word	Unsigned	

MTHI	 Move	to	HI	

MTLO	 Move	to	LO	

MUL	 MulFply	Word	to	Register	

MULT	 MulFply	Word	

MULTU	 MulFply	Unsigned	Word	

2	

(d)	Jump	and	Branch	InstrucWons	

•  The	following	types	of	Jump	and	Branch	instrucFons	are	supported	by	
MIPS32.	
–  PC	relaFve	condiFonal	branch	

•  A	16-bit	offset	is	added	to	PC.	
–  PC-region	uncondiFonal	jump	

•  A	28-bit	offset	if	added	to	PC.	
–  Absolute	(register)	uncondiFonal	jump	

–  Special	Jump	instrucFons	that	link	the	return	address	in	R31.	

89	 2	90	

Type	 Mnemonic	 FuncWon	
UncondiWonal	

Jump	within	a	256	
MB	Region	

J	 Jump	

JAL	 Jump	and	Link	

JALX	 Jump	and	Link	Exchange	

Type	 Mnemonic	 FuncWon	
	

UncondiWonal	
Jump	using	

Absolute	Address	

JALR	 Jump	and	Link	Register	

JALRHB	 Jump	and	Link	Register	with	Hazard	
Barrier	

JR	 Jump	Register	

JRHB	 Jump	Register	with	Hazard	Barrier	

24/07/17	

16	

2	91	

Type	 Mnemonic	 FuncWon	
PC-RelaWve	CondiWonal	Branch	

Comparing	Two	Registers	
BEQ	 Branch	on	Equal	

BNE	 Branch	on	Not	Equal	

Type	 Mnemonic	 FuncWon	
	

PC-RelaWve	CondiWonal	Branch	
Comparing	With	Zero	

BGEZ	 Branch	on	Greater	Than	or	Equal	to	Zero	

BGEZAL	 Branch	on	Greater	Than	or	Equal	to	Zero	
and	Link	

BGTZ	 Branch	on	Greater	than	Zero	

BLEZ	 Branch	on	Less	Than	or	Equal	to	Zero	

2	

(e)	Miscellaneous	InstrucWons	

•  These	instrucFons	are	used	for	various	specific	machine	control	purposes.		
•  They	include:	

–  ExcepFon	instrucFons	
–  CondiFonal	MOVE	instrucFons	
–  Prefetch	instrucFons	
–  NOP	instrucFons	

92	

2	93	

Type	 Mnemonic	 FuncWon	
System	Call	and	
Breakpoint	

BREAK	 Breakpoint	

SYSCALL	 System	Call	

Type	 Mnemonic	 FuncWon	
	

Trap-on-
CondiWon	

Comparing	Two	
Registers	

TEQ	 Trap	in	Equal	

TGE	 Trap	if	Greater	Than	or	Equal	

TGEU	 Trap	if	Greater	Than	or	Equal	
Unsigned	

TLT	 Trap	if	Less	Than	

TLTU	 Trap	if	Less	Than	Unsigned	

TNE	 Trap	if	Not	Equal	

Type	 Mnemonic	 FuncWon	
	

Trap-on-
CondiWon	

Comparing	an	
Immediate	

Value	

TEQI	 Trap	if	Equal	Immediate	

TGEI	 Trap	if	Greater	Than	or	Equal	
Immediate	

TGEIU	 Trap	if	Greater	Than	or	Equal	
Immediate	Unsigned	

TLTI	 Trap	if	Less	Than	Immediate	

TLTIU	 Trap	if	Less	Than	Immediate	Unsigned	

TNEI	 Trap	if	Not	Equal	Immediate	

2	94	

Type	 Mnemonic	 FuncWon	
	

CondiWonal	
Move	

MOVF	 Move	CondiFonal	on	FloaFng	Point	False	

MOVN	 Move	CondiFonal	on	Not	Zero	

MOVT	 Move	CondiFonal	on	FloaFng	Point	True	

MOVZ	 Move	CondiFonal	on	Zero	

Type	 Mnemonic	 FuncWon	
Prefetch	 PREF	 Prefetch	Register+Offset	

NOP	 NOP	 No	OperaFon	

2	

(e)	Coprocessor	InstrucWons	

•  The	MIPS	architecture	defines	four	coprocessors	(designated	CP0,	CP1,	
CP2,	and	CP3).	
–  Coprocessor	0	(CP0)	is	incorporated	on	the	CPU	chip	and	supports	the	virtual	

memory	system	and	excepFon	handling.		CP0	is	also	referred	to	as	the	System	
Control	Coprocessor.	

–  Coprocessor	1	(CP1)	is	reserved	for	the	floaFng	point	coprocessor.	
–  Coprocessor	2	(CP2)	is	available	for	specific	implementaFons.	
–  Coprocessor	3	(CP3)	is	available	for	future	extensions.	

•  These	instrucFons	are	not	discussed	here.	

95	 2	

•  MIPS32	architecture	also	supports	a	set	of	floaFng-point	
registers	and	floaFng-point	instrucFons.	
–  Shall	be	discussed	later.	

96	

24/07/17	

17	

2	

END	OF	LECTURE	9	

97	 2	

Lecture 10: MIPS PROGRAMMING EXAMPLES

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

2	

Some	Examples	of	MIPS32	ArithmeWc	

99	

A	=	B	+	C;	

C	Code	

add	 	$s1,	$s2,	$s3	

MIPS32		Code	

A	=	B	+	C	–	D;	
E	=	F	+	A;	

C	Code	

add	 	$t0,	$s1,	$s2	
sub 	$s0,	$t0,	$s3	
add 	$s4,	$s5,	$s0;	

MIPS32		Code	

B	loaded	in	$s2	
C	loaded	in	$s3	
A	ß	$s1	

B	loaded	in	$s1		
C	loaded	in	$s2	
D	loaded	in	$s3		
F	loaded	in	$s5	
$t0	is	a	temporary	
A	ß	$s0;		E	ß	$s4	

2	

Example	on	LOAD	and	STORE	

100	

A[10]	=	X	–	A[12];	

C	Code	

lw	 	$t0,	48($s3)	
sub 	$t0,	$s2,	$t0	
sw 	$t0,	40($s3);	

MIPS32		Code	

$s3	contains	the	starFng	
address	of	the	array	A	
$s2	loaded	with	X	
$t0	is	a	temporary	

Address	of	A[10]	will	be	
$s3+40		(4	bytes	per	element)	
Address	of	A[12]	will	be	
$s3+48	

2	

Examples	on	Control	Constructs	

101	

if	(x==y)		z	=	x	–	y;	

C	Code	

	bne	 	$s0,	$s1,	Label	
	sub 	$s3,	$s0,	$s1	

Label:	 	…… 		

MIPS32		Code	

$s0	loaded	with	x	
$s1	loaded	with	y	
z	ß	$s3	

2	102	

if	(x	!=	y)		z	=	x	–	y;	
else											z	=	x	+	y;	

C	Code	

	beq	 	$s0,	$s1,	Lab1	
	sub 	$s3,	$s0,	$s1	
	j 	Lab2	

Lab1:	 	add 	$s3,	$s0,	$s1	
Lab2: 	….	

MIPS32		Code	

$s0	loaded	with	x	
$s1	loaded	with	y	
z	ß	$s3	

24/07/17	

18	

2	

•  MIPS32	supports	a	limited	set	of	condiFonal	branch	instrucFons:	
				beq				$s2,Label 	//	Branch	to	Label	of	$s2	=	0	
				bne				$s2,Label 	//	Branch	to	Label	of	$s2	!=	0	

•  Suppose	we	need	to	implement	a	condiFonal	branch	aker	comparing	two	
registers	for	less-than	or	greater	than.	

103	

if	(x	<	y)				z	=	x	–	y;	
else											z	=	x	+	y;	

C	Code	 	slt 	$t0,$s0,$s1	
	beq	 	$t0,	$zero,	Lab1	
	sub 	$s3,	$s0,	$s1	
	j 	Lab2	

Lab1:	 	add 	$s3,	$s0,	$s1	
Lab2: 	….	

MIPS32		Code	 Set	if	less	than.	
If	$s0	<	$s1,	then	
set	$t0=1;	else	
$t0=0.	

2	

•  MIPS32	assemblers	supports	several	pseudo-instrucFons	that	are	meant	
for	user	convenience.	
–  Internally	the	assembler	converts	them	to	valid	MIPS32	instrucFons.	

•  Example:	The	pseudo-instrucFon	branch	if	less	than	
													blt			$s1,	$s2,	Label		

104	

	slt 	$at,	$s1,	$s2	
	bne	 	$t0,	$zero,	Label	
	….	

Label: 	….	

MIPS32		Code	
The	assembler	requires	an	
extra	register	to	do	this.	
The	register	$at	(=	R1)	is	
reserved	for	this	purpose.	

2	

Working	with	Immediate	Values	in	Registers	

•  Case	1:	Small	constants,	which	can	be	specified	in	16	bits.	
–  Occurs	most	frequently	(about	90%	of	the	Fme).	
–  Examples:	

		A	=	A	+	16;						à						addi				$s1,	$s1,	16											(A	in	$s1)	
		X	=	Y	–	1025;		à						subi					$s1,	$s2,	1025						(X	in	$s1,	Y	in	$s2)	
		A	=	100;										à						addi					$s1,	$zero,	100				(A	in	$s1)	

105	 2	

•  Case	2:	Large	constants,	that	require	32	bits	to	represent.	
–  How	to	load	a	large	constant	in	a	register?	
–  Requires	two	instrucFons.	

•  A	“Load	Upper	Immediate”	instrucFon,	that	loads	a	16-bit	number	into	
the	upper	half	of	a	register	(lower	bits	filled	with	zeros).	

•  An	“OR	Immediate”	instrucFon,	to	insert	the	lower	16-bits.	
–  Suppose	we	want	to	load	0xAAAA3333	into	a	register	$s1.	

106	

lui					$s1,	0xAAAA	

ori					$s1,	$s1,	0x3333	

1010101010101010	 0000000000000000	

1010101010101010	 0011001100110011	

2	

Other	MIPS	Pseudo-instrucWons	

107	

Pseudo-InstrucWon	 Translates	to	 FuncWon	
blt				$1,	$2,	Label	 slt					$at,	$1,	$2	

bne			$at,	$zero,	Label	
Branch	if	less	than	

bgt				$1,	$2,	Label	 sgt					$at,	$1,	$2	
bne			$at,	$zero,	Label	

Branch	if	greater	than	

ble				$1,	$2,	Label	 sle					$at,	$1,	$2	
bne			$at,	$zero,	Label	

Branch	if	less	or	equal	

bge				$1,	$2,	Label	 sge					$at,	$1,	$2	
bne				$at,	$zero,	Label	

Branch	if	greater	or	equal	

li								$1,	0x23ABCD	 lui							$1,			0x0023	
ori							$1,	$1,	0xABCD				

Load	immediate	value	into	
a	register	

2	108	

Pseudo-InstrucWon	 Translates	to	 FuncWon	
move				$1,	$2	 add				$1,	$2,	$zero	 Move	content	of	one	register	to	

another	

la											$a0,	0x2B09D5	 lui							$a0,	0x002B	
ori							$a0,	$a0,	l0x09D5	

Load	address	into	a	register	

ble				$1,	$2,	Label	 sle					$at,	$1,	$2	
bne			$at,	$zero,	Label	

Branch	if	less	or	equal	

bge				$1,	$2,	Label	 sge					$at,	$1,	$2	
bne				$at,	$zero,	Label	

Branch	if	greater	or	equal	

li								$1,	0x23ABCD	 lui							$1,			0x0023	
ori							$1,	$1,	0xABCD				

Load	immediate	value	into	a	
register	

24/07/17	

19	

2	

A	Simple	FuncWon	Call	

109	

swap	(int	A[],	int	k)	
{	
				int		temp;	
				temp	=	A[k];	
				A[k]	=	A[k+1];	
				A[k+1]	=	temp;	
}	

C	FuncFon	

Exchange	A[k]	and	A[k+1]	

swap: 	muli	 	$t0,	$s0,	4	
	add 	$t0,	$s1,	$t0	
	lw 	$t1,	0($t0)	
	lw 	$t2,	4($t0)	
	sw 	$t2,	0($t0)	
	sw 	$t1,	4($t0)	
	jr 	$ra	

MIPS32		Code	

$s0	loaded	with	index	k	
$s1	loaded	with	base	address	
of	A	
Address	of	A[k]	=	$s1	+	4	*	$s0	

2	

MIPS	InstrucWon	Encoding	
•  All	MIPS32	instrucFons	can	be	classified	into	three	groups	in	terms	of	

instrucFon	encoding.	
–  R-type	(Register),	I-type	(Immediate),	and	J-type	(Jump).	
–  In	an	instrucFon	encoding,	the	32	bits	of	the	instrucFon	are	divided	into	

several	fields	of	fixed	widths.	
–  All	instrucFons	may	not	use	all	the	fields.	

•  Since	the	relaFve	posiFons	of	some	of	the	fields	are	same	across	
instrucFons,	instrucFon	decoding	becomes	very	simple.	

110	

2	

(a)	R-type	Instruc3on	Encoding	

•  Here	an	instrucFon	can	use	up	to	three	register	operands.	
–  Two	source	and	one	desFnaFon.	

•  In	addiFon,	for	shik	instrucFons,	the	number	of	bits	to	shik	can	also	be	
specified.	

111	

opcode	 rs	 rd	rt	 shamt	 funct	
0	16	 15	 11	 10	 6	 5	31	 26	 25	 21	 20	

6-bit	
opcode	

Source	
register	1	

Source	
register	2	

DesOnaOon	
register		

Shi6	
amount	

Opcode	extension	
(addiOonal	funcOons)	

2	

•  Examples	of	R-type	instrucFons:	
		 	add 	$s1,	$s2,	$s3	

	sub 	$t1,	$s3,	$s4	
	sla 	$s1,	$s2,	5 	//	shik	lek	$s2	by	5	places,	and	store	in	$s1	

•  An	example	instrucFon	encoding:				add				$t1,	$s1,	$s2	
•  Recall:		$t1	is	R9,	$s1	is	R17,	and	$s2	is	R18.	
•  For	“add”,	opcode	=	000000,	and	funct	=	100000,	

		

112	

000000	 10001	 01001	10010	 00000	 100000	
0	16	 15	 11	 10	 6	 5	31	 26	 25	 21	 20	

2	

(b)	I-type	Instruc3on	Encoding	

•  Contains	a	16-bit	immediate	data	field.	
•  Supports	one	source	and	one	desFnaFon	register.	

113	

opcode	 rs	 Immediate	Data	rt	
0	16	 15	31	 26	 25	 21	 20	

6-bit	
opcode	

Source	
register	1	

DesOnaOon
register		

16-bit	
immediate	

data	

2	

•  Examples	of	I-type	instrucFons:	
		 	lw 	$s1,	50($s5)	

	sw 	$t1,	100($s1)	
	addi 	$t0,	$s1,	188	
	beq 	$s1,	$s2,	Label 	//	Label	is	encoded	as	a	16-bit	offset	relaFve	to	PC	
	bne 	$s3,	$zero,	Label	

•  An	example	instrucFon	encoding:				lw				$t1,	48($s1)	
•  Recall:		$t1	is	R9,	$s1	is	R17.	
•  For	“lw”,	opcode	=	100011,	and	funct	=	100000,	

		

114	

100011	 10001	 01001	 0000000000110000	
0	16	 15	31	 26	 25	 21	 20	

24/07/17	

20	

2	

(c)	J-type	Instruc3on	Encoding	

•  Contains	a	26-bit	jump	address	field.	
–  Extended	to	28	bits	by	padding	two	0’s	on	the	right.	

•  Example: 	j			Label	
	

115	

opcode	 Immediate	Data	
0	31	 26	 25	

6-bit	
opcode	

26-bit	jump	
address	

2	

A	Quick	View	

116	

opcode	 rs	 Immediate	Data	rt	
0	16	 15	31	 26	 25	 21	 20	

opcode	 rs	 rd	rt	 shamt	 funct	
0	16	 15	 11	 10	 6	 5	31	 26	 25	 21	 20	

opcode	 Immediate	Data	
0	31	 26	 25	

R-type	

I-type	

J-type	

•  Some	instrucFons	require	
two	register	operands	rs	&	
rt	as	input,	while	some	
require	only	rs.	

•  Gets	known	only	aker	
instrucFon	is	decoded.		

•  While	decoding	is	going	on,	
we	can	prefetch	the	
registers	in	parallel.	
•  May	or	may	not	be	
required	later.	

•  Similarly,	the	16-bit	and	26-bit	immediate	data	are	retrieved	and	sign-
extended	to	32-bits	in	case	they	are	required	later.	

2	

Addressing	Modes	in	MIPS32	
•  Register	addressing 	 	add 	$s1,	$s2,	$s3	
•  Immediate	addressing 	 	addi 	$s1,	$s2,	200	
•  Base	addressing 	 	lw 	$s1,	150($s2)	

–  Content	of	a	register	is	added	to	a	“base”	value	to	get	the	operand	address.	
•  PC	relaFve	addressing 	 	beq 	$s1,	$s2,	Label	

–  16-bit	offset	is	added	to	PC	to	get	the	target	address.	
•  Pseudo-direct	addressing 	j 	Label	

–  26-bit	offset	if	shiked	lek	by	2	bits	and	then	added	to	PC	to	get	the	target	
address.	

117	 2	

END	OF	LECTURE	10	

118	

2	

Lecture 11: SPIM – A MIPS32 SIMULATOR

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

Lecture 1: EVOLUTION OF COMPUTER SYSTEM

DR. KAMALIKA DATTA
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NIT MEGHALAYA

2	

How	to	Run	MIPS32	Programs?	

•  Best	way	to	learn	MIPS32	assembly	language	programming	is	
through	a	simulator.	
–  SPIM	is	a	self-contained	simulator	available	in	the	public	domain	that	

runs	MIPS32	programs.	
–  Available	for	download	in	h}p://spimsimulator.sourceforge.net		
–  SPIM	implements	almost	the	enFre	MIPS32	instrucFon	set	(along	with	

the	extensions,	viz.	pseudo-instrucFons).	

120	

24/07/17	

21	

2	

•  SPIM	has	both	terminal-based	and	window-based	interfaces.	
–  Terminal	versions	are	available	on	Linux,	Windows,	and	Mac	OS	X.	
–  Window-based	interface	is	provides	by	the	QTSPIM	program,	which	is	

also	available	on	Linux,	Windows	and	Mac	OS	X.	

•  SPIM	is	copyrighted	by	James	Larus	and	distributed	under	a	
BSD	license.	

•  What	can	SPIM	do?	
–  It	can	read	and	execute	assembly	language	programs	for	MIPS32.	
–  Provides	a	simple	debugger.	
–  Provides	minimal	set	of	OS	services	via	system	calls.	

121	 2	122	

Screenshot	of	
QTSPIM	

2	

MIPS32	Assembly	Code	Layout	

123	

 .text # code section
 .globl main # starting point, must be global

main:

 # user program code goes here

 .data # data section

 # user program data goes here

2	

Assembler	DirecWves	
a)  .text	

–  Specifies	the	user	text	segment,	which	contains	the	instrucFons.	
b)  .data	

–  Specifies	the	data	segment,	where	all	the	data	items	are	defined.	

c)  .globl		sym	
–  Specifies	that	the	symbol	“sym”	is	global,	and	can	be	referred	from	other	files.	

d)  .word		w1,	w2,	…,	wn	
–  Stores	the	specified	32-bit	numbers	in	successive	memory	words.	

e)  .half		h1,	h2,	…,	hn	
–  Stores	the	specified	16-bit	numbers	in	successive	memory	half-words.	

124	

2	

f)  .byte		b1,	b2,	…,	bn	
–  Stores	the	specified	8-bit	numbers	in	successive	memory	bytes.	

g)  .ascii		str	
–  Stores	the	specified	string	in	memory	(in	ASCII	code),	but	do	not	null-terminate	it.	
–  Strings	are	enclosed	in	double	quotes	and	follow	C-like	convenFon	(“\n”,	etc.).	

h) .asciiz		str	
–  Stores	the	specified	string	in	memory	(in	ASCII	code),	and	null-terminate	it.	

i)  .space		n	
–  Reserve	space	for	n	successive	bytes	in	memory.	

125	 2	

Register	Naming	ConvenWons	
•  Already	discussed	earlier	::	quick	recall	:-	

–  $zero 	 	constant	zero	
–  $at 	 	reserved	by	assembler	
–  $v0,	$v1 	 	for	parameter	passing	
–  $a0	to	$a3 	 	for	arguments	
–  $t0	to	$t9 	 	temporary	registers	(not	saved	by	callee)	
–  $s0	to	$s7 	 	registers	(saved	by	callee)	
–  $gp 	 	global	pointer	
–  $sp 	 	stack	pointer	
–  $ra 	 	return	address	

126	

24/07/17	

22	

2	

Pseudo-instrucWons	

•  The	MIPS32	pseudo-instrucFons,	as	discussed	earlier,	are	all	
supported	by	SPIM.	

•  SPIM	converts	these	into	MIPS32	instrucFons	before	
execuFng	them.	

127	 2	

OperaWng	System	Interface:	“syscall”	

128	

Service	 Code	(put	in	
$v0)	

Arguments	 Result	

print_int	 1	 $a0	=	integer	

print_string	 4	 $a0	=	address	of	string	

read_int	 5	 int	in	$v0	

read_string	 8	 $a0	=	address	of	buffer,	
$a1	=	length	

exit	 10	

Other	system	calls	for	floaOng-point	numbers	also	exist	

2	

Example	Program	1	

129	

 .text
 .globl main

main: la $t0, value

 lw $t1, 0($t0)
 lw $t2, 4($t0)
 add $t3, $t1, $t2
 sw $t3, 8($t0)

 .data

value: .word 50, 30, 0

Add	two	numbers	in	
memory	and	store	the	
result	in	the	next	locaFon.	

2	

Example	Program	2	

130	

 .text
 .globl main

main: add $t1, $zero, 0x2A

 add $t2, $zero, 0x0D
 add $s3, $t1, $t2

Add	two	constant	numbers	
specified	as	immediate	
data,	and	store	the	result	in	
a	register.	

2	

Example	Program	3	

131	

 .text
 .globl main

main: add $t1, $zero, 0x2A

 add $t2, $zero, 0x0D
 add $s3, $t1, $t2

 li $v0, 10
 syscall

The	same	program	but	
using	system	call	to	exit.	

2	

Example	
Program	4	

132	

 .data
str1: . asciiz “Enter first number: ”
str2: . asciiz “Enter second number: ”
str3: . asciiz “The sum is = ”

 .text
 .globl main

main: li $v0, 4 # print string

 la $a0, str1
 syscall

 li $v0, 5 # read integer
 syscall
 move $t0, $v0

Read	two	numbers	
from	the	keyboard	
and	print	the	sum.	

24/07/17	

23	

2	133	

 li $v0, 4
 la $a0, str2
 syscall

 li $v0, 5
 syscall
 move $t1, $v0

 add $t1, $t0, $t1
 # $t1= $t0 + $t1

 li $v0, 4
 la $a0, str3
 syscall

 	
	li $v0, 1
 move $a0, $t1
 syscall

 li $v0,10
 syscall

	

2	

Example	
Program	5	

134	

 .data
num: .word 1, 2, 3, 4, 5, 6 ,7, 8, 9, 10

 .text
 .globl main

main:
 la $t0, num
 li $t2, 0 # holds the sum
 li $t3, 0 # counter for loop

loop: lw $t1, 0($t0)
 add $t2, $t2, $t1
 addi $t3, $t3, 1

 addi $t0, $t0, 4 # point to next
 bne $t3, 10, loop

 li $v0,10
 syscall

Calculate	sum	of	10	
32-bit	numbers	stored	

in	consecuFve	
memory	locaFons.	

2	

Example	
Program	6	

135	

 .data
num: .word 0
msg: .asciiz "Enter the Number: "
msg1: .asciiz "Palindrome"
msg2: .asciiz "Not Palindrome"

 .text
 .globl main

main:
 li $v0,4
 la $a0, msg
 syscall

Check	if	a	given	
number	is	a	
palindrome.	

2	136	

 li $v0,5
 syscall
 move $t0, $v0
 move $t3, $t0
 li $t2, 0

loop:

 mul $t2, $t2, 10
 rem $t1,$t0,10
 div $t0,$t0,10
 add $t2, $t2, $t1

 bne $t0,$zero,loop
 bne $t3, $t2, np

 li $v0, 4
 la $a0, msg1
 syscall

 li $v0, 10
 syscall

np:
 li $v0, 4
 la $a0, msg2
 syscall

 li $v0, 10
 syscall

2	

FuncWon	Calls	in	MIPS32	
•  MIPS	uses	the	jump	and	link	instrucFons.	

–  Control	is	transferred	to	the	funcFon	using	the	jal	instrucFon.		
–  The	jal	instrucFon	jumps	to	a	label	and	stores	the	PC	value	in	the	$ra	

register.	
–  To	transfer	the	control	back	to	the	caller	program	we	use:		jr			$ra.	

137	 2	

Example	
Program		

138	

 .data
num1: .word 14
num2: .word 15
sum: .word 0

 .text

main:

 lw $t0, num1
 lw $t1, num2
 jal SumFunc
 sw $t1, sum

 li $v0,10
 syscall

FuncFon	call	and	
return.	

SumFunc:
 add $t1,$t1,$t0
 jr $ra

24/07/17	

24	

2	

END	OF	LECTURE	11		

139	

