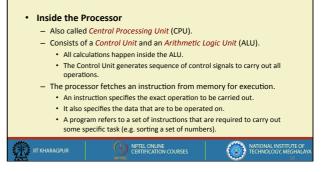
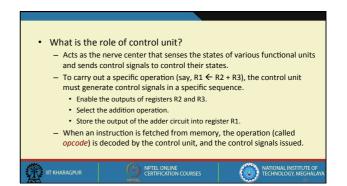
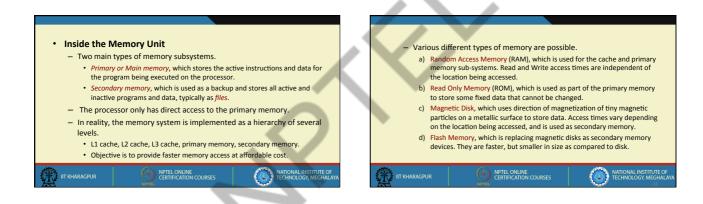
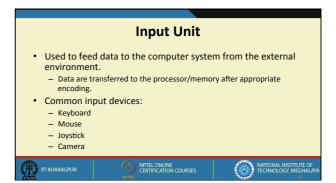

Generation	Main Technology	Representative Systems			
First (1945-54)	Vacuum tubes, relays	Machine & assembly language ENIAC, IBM-701			
Second (1955-64)	Transistors, memories, I/O processors	Batch processing systems, HLL IBM-7090			
Third (1965-74)	SSI and MSI integrated circuits Microprogramming	Multiprogramming / Time sharing IBM 360, Intel 8008			
Fourth (1975-84)	LSI and VLSI integrated circuits	Multiprocessors Intel 8086, 8088			
Fifth (1984-90)	VLSI, multiprocessor on-chip	Parallel computing, Intel 486			
Sixth (1990 onwards)	ULSI, scalable architecture, post- CMOS technologies	Massively parallel processors Pentium, SUN Ultra workstations			
		NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAY/			





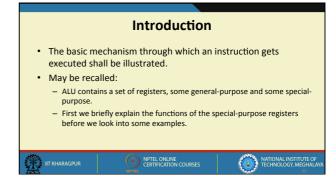


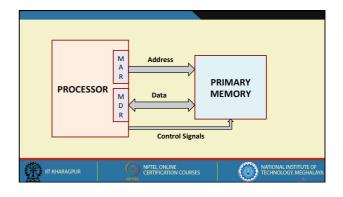
• What is the role of ALU?

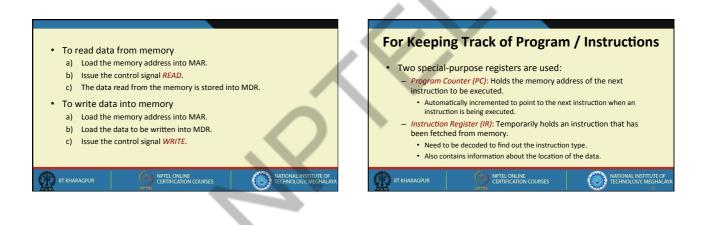

- It contains several registers, some general-purpose and some specialpurpose, for temporary storage of data.
- It contains circuitry to carry out logic operations, like AND, OR, NOT, shift, compare, etc.
- It contains circuitry to carry out arithmetic operations like addition, subtraction, multiplication, division, etc.
- During instruction execution, the data (operands) are brought in and stored in some registers, the desired operation carried out, and the result stored back in some register or memory.

IIT KHARAGPUR		NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAYA
	NPTEL	19

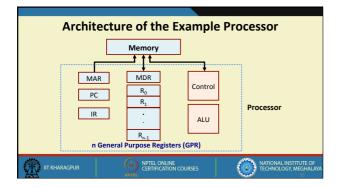


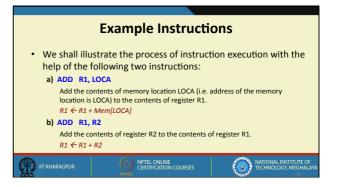




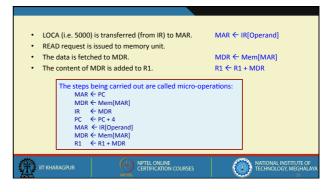


For Interfacing with the Primary Memory

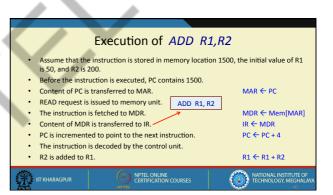


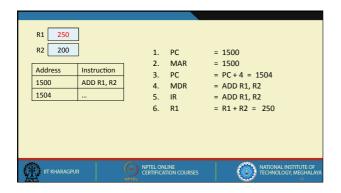


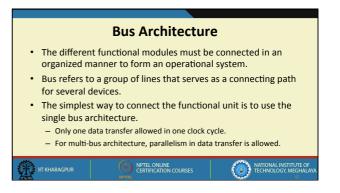
Address

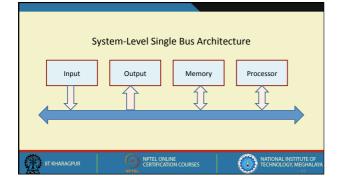

0

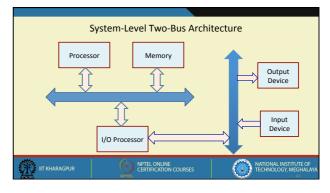
5

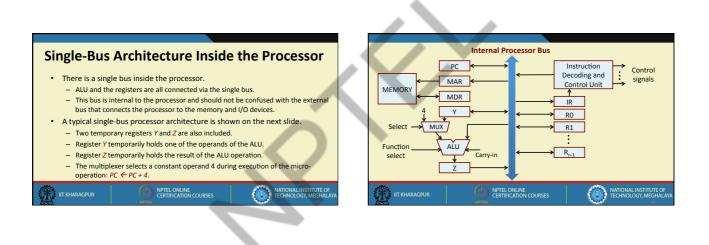


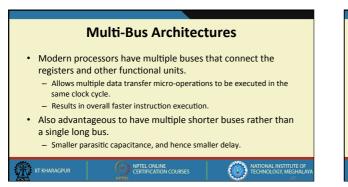


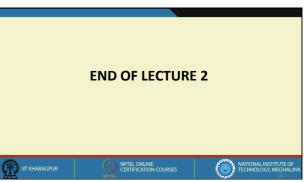

Execution of ADD R	1,LOCA
 Assume that the instruction is stored in memory lo is 50, and LOCA is 5000. 	cation 1000, the initial value of R1
 Before the instruction is executed, PC contains 100 	0.
 Content of PC is transferred to MAR. 	$MAR \leftarrow PC$
 READ request is issued to memory unit. 	
 The instruction is fetched to MDR. 	MDR ← Mem[MAR]
 Content of MDR is transferred to IR. 	
 PC is incremented to point to the next instruction. 	$PC \leftarrow PC + 4$
• The instruction is decoded by the control unit.	ADD R1 5000
IIT KHARAGPUR OPTEL ONLINE CERTIFICATION COURSES	NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAYA

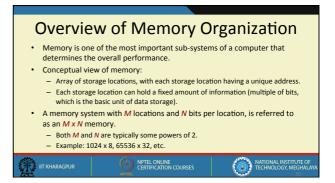


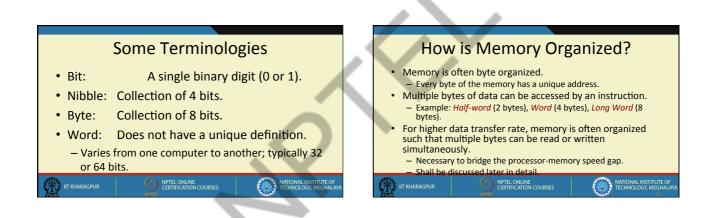

R1 125		1.	PC	_	1000
Address 1000 1004 5000 LOCA	Content ADD R1, LOCA 75	1. 2. 3. 4. 5. 6. 7. 8.	PC MAR PC MDR IR MAR MDR R1	= = = =	1000 1000 PC + 4 = 1004 ADD R1, LOCA ADD R1, LOCA LOCA = 5000 75 R1 + MDR = 50 + 75 = 125
IIT KHARAGPU	NPTEL O CERTIFIC	NLINE ATION COURSES		NATIONAL INSTITUTE OF TECHNOLOGY, MECHALAYA	

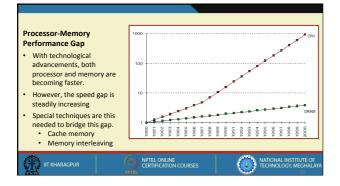


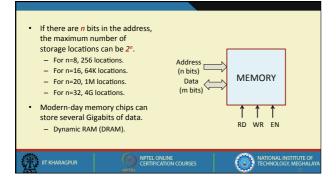


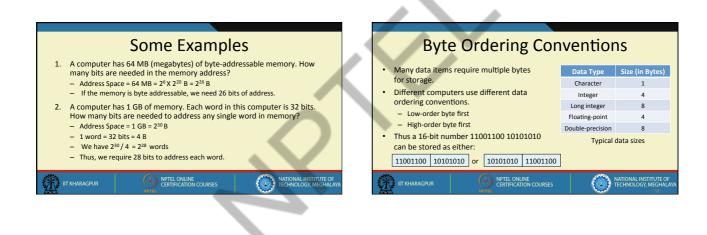


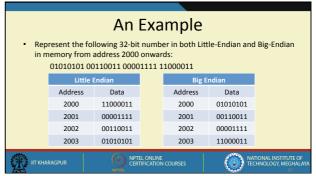




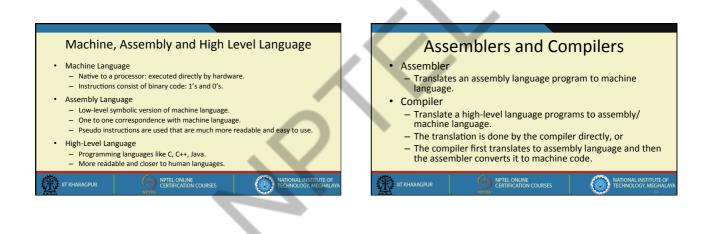


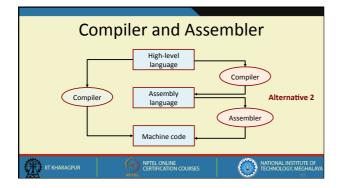


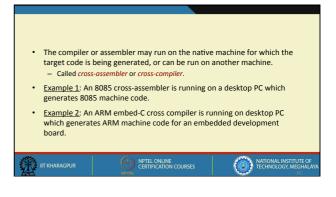


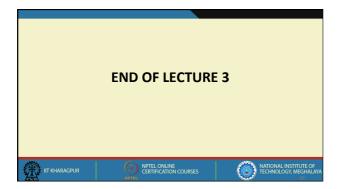

	How do we Specify Memory Sizes?					
	Unit		Bytes	In Decimal		
	8 bits	(B)	1 or 20	100		
	Kilobyte	(KB)	1024 or 2 ¹⁰	10 ³		
	Megabyte	(MB)	1,048,576 or 220	10 ⁶		
	Gigabyte	(GB)	1,073,741,824 or 230	10 ⁹		
	Terabyte	(TB)	1,099,511,627,776 or 240	1012		
	Petabyte	(PB)	2 ⁵⁰	10 ¹⁵		
	Exabyte	(EB)	2 ⁶⁰	10 ¹⁸		
	Zettabyte	(ZB)	270	1021		
IIT KHARAGPUR			NPTEL ONLINE CERTIFICATION COURSES		L INSTITUTE OF .OGY, MEGHALAYA 54	

		r	,
	Address	Contents	
	0000 0000	0000 0000 0000 0001	
	0000 0001	0000 0100 0101 0000	
	0000 0010	1010 1000 0000 0000	
	:	:	-
	1111 1111	1011 0000 0000 1010	
An example: 2 ⁸ x 16 memory			
IIT KHARAGPUR	NPTEL ONLINE CERTIFICATION COURSES OF TECHNOLOGY, MEGALAW		

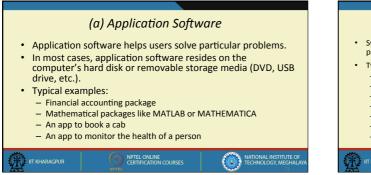


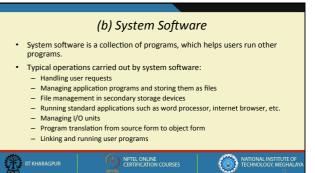


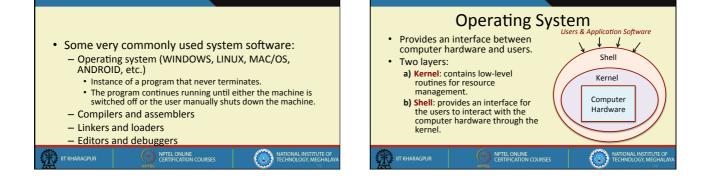


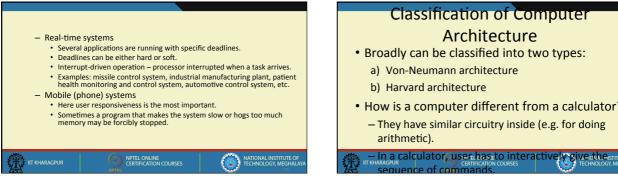

<section-header><list-item><list-item><list-item><list-item><list-item><list-item>

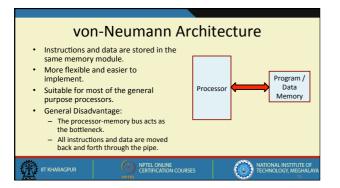
	An Example					
• <u>Comp</u>	oute S =	(A + B) – (C – D)				
LOAD	R1,A					
LOAD	R2,B					
ADD	R3,R1,R2	// R3 = A + B				
LOAD	R1,C					
LOAD	R2,D					
SUB	R4,R1,R2	// R4 = C – D				
SUB	R3,R3,R4	// R3 = R3 – R4				
STORE S,R3						
	R	NPTEL ONLINE CERTIFICATION COURSES	NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAYA			

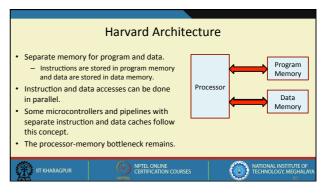


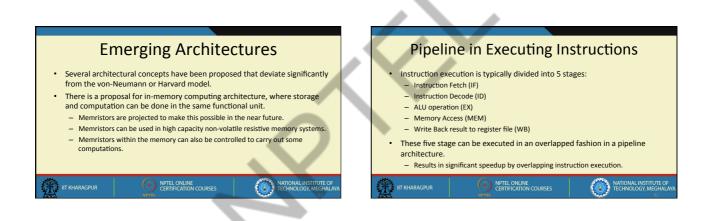


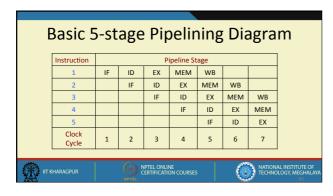


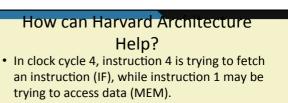


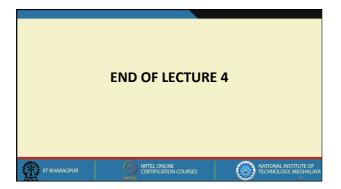


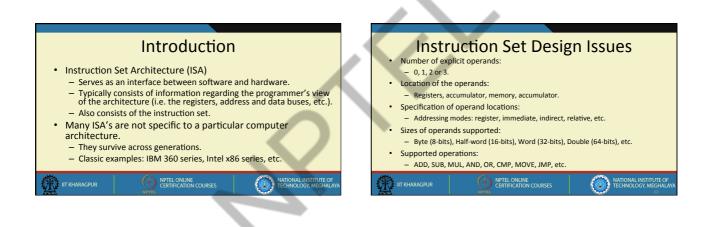


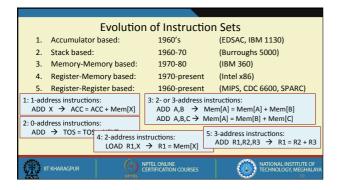


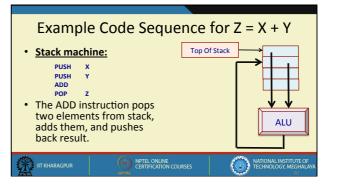

Classification of Computer Architecture

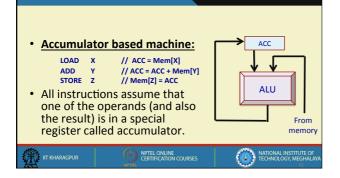

- Broadly can be classified into two types:
 - b) Harvard architecture
- How is a computer different from a calculator? - They have similar circuitry inside (e.g. for doing arithmetic).

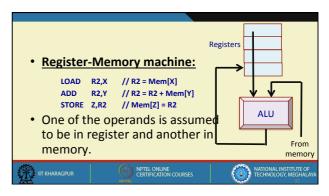


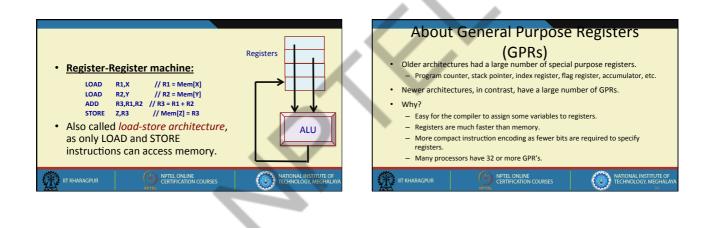


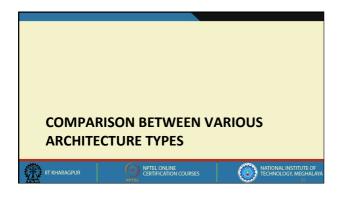

 In von-Neumann architecture, one of these two operations will have to wait resulting in pipeline slowdown.

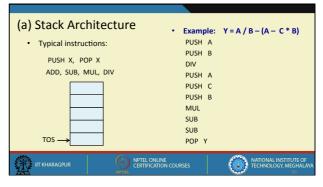

In Harvard architecture, the operations can go on
 In Harvard any speed penalty-as the instruction and some of the second secon

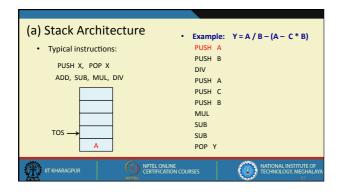


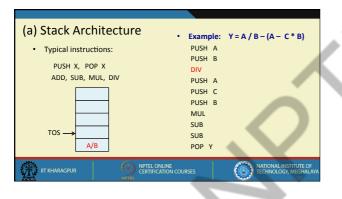


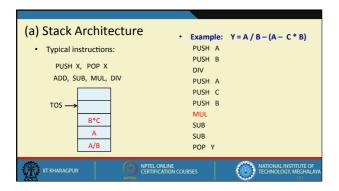


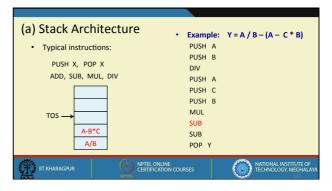


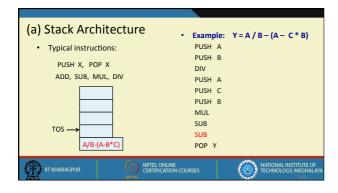




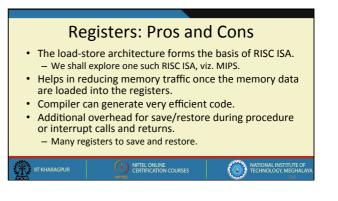




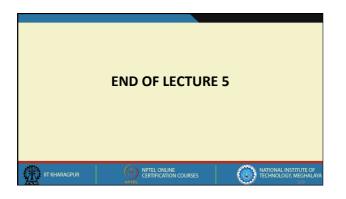



(a) Stack Architecture	• Example: Y = A / B – (A – C * B)
Typical instructions:	PUSH A
	PUSH B
PUSH X, POP X	DIV
ADD, SUB, MUL, DIV	PUSH A
	PUSH C
	PUSH B
	MUL
	SUB
B	SUB
A	POP Y
IIT KHARAGPUR	DURSES NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAYA

4	(a) Stack Architect	Ure • Example: Y = A / B - (A - C * B)
	 Typical instructions: 	PUSH A
		PUSH B
	PUSH X, POP X	DIV
	ADD, SUB, MUL, DIV	PUSH A
	TOS ->	PUSH C
	В	PUSH B
	C	MUL
		SUB
	A	SUB
	A/B	POP Y
	IT KHARAGPUR	NPTEL ONLINE CERTIFICATION COURSES NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAYA



(a) Stack Architecture	• Example: Y = A / B – (A – C * B)
 Typical instructions: 	PUSH A
	PUSH B
PUSH X, POP X	DIV
ADD, SUB, MUL, DIV	PUSH A
	PUSH C
	PUSH B
	MUL
	SUB
	SUB
	POP Y Y = RESULT
	DURSES NATIONAL INSTITUTE OF TECHNOLOGY, MEGALAYA


(b) Accumulator Architecture	Example: $Y = A / B - (A - C * B)$
	LOAD C
Typical instructions:	MUL B
LOAD X, STORE X	STORE D // D = C*B
ADD X, SUB X, MUL X, DIV X	LOAD A
	SUB D
	STORE D // D = A – C*B
	LOAD A
	DIV B
	SUB D
	STORE Y
	NATIONAL INSTITUTE OF
	COURSES TECHNOLOGY, MEGHALA

 (c) Memory-Memory Architecture Typical instructions (3 operands): ADD x, Y, Z SUB X, Y, Z MUL X, Y, Z Typical instructions (2 operands): MOV X, Y ADD X, Y SUB X, Y MUL X, Y 	Example: Y = A / B - (A - C * B) DIV A,B,D MUL E,C,B SUB E,A,E SUB Y,D,E MOV D,A DIV D,B MOV E,C MUL E,B SUB A,E SUB D,A
IIT KHARAGPUR	NATIONAL INSTITUTE OF

(d) Load-Store Archite • Typical instructions: LOAD R1,X STORE Y,R2 ADD R1,R2,R3 SUB R1,R2,R3	LOAD	R2,B R3,C R4,R1,R2 R5,R3,R2 R5,R1,R5 R4,R4,R5
IIT KHARAGPUR		NATIONAL INSTITUTE OF TECHNOLOGY, MEGHALAYA

24/07/17

