SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641107

An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME :19CS503-Cryptography and Network Security
III YEAR /V SEMESTER
Unit 1- Introduction
Topic: Classical encryptions techniques: substitution techniques
\square

[^0]
Recap

\square Model for Network Security
\square Network Access Security Model
\square Simplified Model of Symmetric Encryption
\square Terms in Cryptography
\square Types of Attacks on Encrypted Messages

Substitution Techniques

\square A substitution technique is one in which the letters of plaintext are replaced by other letters or by numbers or symbols.

- Caesar Cipher
\square Monoalphabetic Ciphers
- Playfair Cipher
\square Hill Cipher
\square Polyalphabetic Ciphers
- One-Time Pad

Caesar Cipher

\square Earliest known substitution cipher by Julius Caesar
\square First attested use in military affairs replaces each letter by 3rd letter

a	b	c	d	e	f	g	h	i	j	k	l	m
0	1	2	3	4	5	6	7	8	9	10	11	12

n	o	p	q	r	s	t	u	v	w	x	y	z
13	14	15	16	17	18	19	20	21	22	23	24	25

plain: meet me after the toga party cipher: PHHW PH DIWHU WKH WRJD SDUWB

Mathematical Relations

\square Caesar cipher as:

$$
\begin{aligned}
& c=\mathrm{E}(\mathrm{k}, p)=(p+k) \bmod (26) \\
& p=\mathrm{D}(\mathrm{k}, \mathrm{c})=(\mathrm{c}-k) \bmod (26)
\end{aligned}
$$

\square Brute force Cryptanalysis

1. The encryption and decryption algorithms are known.
2. There are only 25 keys to try.
3. The language of the plaintext is known and easily recognizable.

Monoalphabetic Ciphers

\square Rather than just shifting the alphabet
\square could shuffle (jumble) the letters arbitrarily
\square each plaintext letter maps to a different random ciphertext letter
\square hence key is 26 letters long

Monoalphabetic Ciphers

P	13.33	H	5.83	F	3.33	B	1.67	C	0.00
Z	11.67	D	5.00	W	3.33	G	1.67	K	0.00
S	8.33	E	5.00	Q	2.50	Y	1.67	L	0.00
U	8.33	V	4.17	T	2.50	I	0.83	N	0.00
O	7.50	X	4.17	A	1.67	J	0.83	R	0.00
M	6.67								

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

Monoalphabetic Ciphers

Cipher Text	Equivalent
PZ	ET
S, U, O, M, and H	a, h, i, n, o, r, s
A, B, G, Y, I, J	b, j, k, q, v, x, z

ZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ

```
t a e e te a that e e a

UEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
e t ta tha e ee a e th
\(t\) a

PYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ
e e e tat e the t
```

L was disclosed yesterday that several informal b
irect contacts have been made with political
epresentatives of the viet cong in moscow

```

\section*{Monoalphabetic Ciphers}
\begin{tabular}{|c|c|}
\hline Cipher Text & Equivalent \\
\hline P Z & E T \\
\hline S, U, O, M, and H & a, h, i, n, o, r, s \\
\hline A, B , G, Y, I, J & b, j, k, q, v, x, z \\
\hline
\end{tabular}

\section*{ZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ}
```

t a
e e te
a that e e a

```
```

UEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX

```
UEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
    e t ta t ha e ee a e th t a
    e t ta t ha e ee a e th t a
PYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ
PYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ
e e e tat e the t
```

e e e tat e the t

```
a
```

z was disclosed yesterday that several informal b
irect contacts have been made with political
epresentatives of the viet cong in moscow

```

\section*{Activity}

\section*{Playfair Cipher}
\(\square\) Invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair

\section*{Playfair Key Matrix}
-a 5X5 matrix with any Keyword
\(\square\) Avoid duplicates
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathbf{M}\) & \(\mathbf{0}\) & \(\mathbf{N}\) & A & R \\
\hline \(\mathbf{C}\) & \(\mathbf{H}\) & Y & B & D \\
\hline \(\mathbf{E}\) & \(\mathbf{F}\) & \(\mathbf{G}\) & \(\mathbf{I} / \mathbf{J}\) & \(\mathbf{K}\) \\
\hline \(\mathbf{L}\) & \(\mathbf{P}\) & \(\mathbf{Q}\) & \(\mathbf{S}\) & \(\mathbf{T}\) \\
\hline \(\mathbf{U}\) & \(\mathbf{V}\) & \(\mathbf{W}\) & \(\mathbf{X}\) & \(\mathbf{Z}\) \\
\hline
\end{tabular}

\section*{Rules}
1. if a pair is a repeated letter, insert filler like ' X '
2. if both letters fall in the same row, replace each with letter to right (wrapping back to start from end)
3. if both letters fall in the same column, replace each with the letter below it (wrapping to top from bottom)
4. otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair

\section*{Examples}

1．balloon－ba lx lo on
2．ar is encrypted as RM
3．mu is encrypted as CM．
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathbf{M}\) & \(\mathbf{O}\) & \(\mathbf{N}\) & \(\mathbf{A}\) & \(\mathbf{R}\) \\
\hline \(\mathbf{C}\) & \(\mathbf{H}\) & \(\mathbf{Y}\) & \(\mathbf{B}\) & \(\mathbf{D}\) \\
\hline \(\mathbf{E}\) & \(\mathbf{F}\) & \(\mathbf{G}\) & \(\mathbf{I} / \mathbf{J}\) & \(\mathbf{K}\) \\
\hline \(\mathbf{L}\) & \(\mathbf{P}\) & \(\mathbf{Q}\) & \(\mathbf{S}\) & \(\mathbf{T}\) \\
\hline \(\mathbf{U}\) & \(\mathbf{V}\) & \(\mathbf{W}\) & \(\mathbf{X}\) & \(\mathbf{Z}\) \\
\hline
\end{tabular}
\begin{tabular}{llll}
\(I\) & \(R\) & E & \(\mathbf{X}>M\) \\
\(B\) & \(C\) & \(D\) & \(G-H\)
\end{tabular}

K N O Q S T U V W Z

\section*{HI}

Shape: Rectangle
Rule: Pick Same Rows,
Opposite Corners

\section*{BM}


\section*{DE}

Shape: Column
Rule: Pick Items Below Each Letter, Wrap to Top if Needed

OD
\begin{tabular}{lllll}
\(P\) & \(L\) & \(A\) & \(Y\) & \(F\) \\
\(I\) & \(R\) & \(E\) & \(X\) & \(M\) \\
\hline\(B\) & \(C\) & \(D\) & \(G\) & \(H\) \\
\(K\) & \(N\) & \(O\) & \(Q\) & \(S\) \\
\(T\) & \(U\) & \(V\) & \(W\) & \(Z\)
\end{tabular}

\section*{TH}

Shape: Rectangle
Rule: Pick Same Rows, Opposite Corners

\section*{ZB}

\section*{EG}

Shape: Rectangle
Rule: Pick Same Rows, Opposite Corners

XD


OL
Shape: Rectangle
Rule: Pick Same Rows, Opposite Corners

NA

\section*{P L A Y F \\ I R E \(>\mathrm{X}>\mathrm{M}\) \\ B C D G H K N O Q S \\ T U V W Z}

\section*{EX}

Shape: Row
Rule: Pick Items to Right of Each Letter, Wrap to Left if Needed

XM

\section*{Assessment 1}
1. Caesar Cipher is an example of
a) Poly-alphabetic Cipher
b) Mono-alphabetic Cipher
c) Multi-alphabetic Cipher
d) Bi-alphabetic Cipher

2 Monoalphabetic ciphers are stronger than Polyalphabetic ciphers because frequency analysis is tougher on the former.
a) True
b) False

\section*{REFERENCES}
1. William Stallings, Cryptography and Network Security, 6 th Edition, Pearson Education, March 2013.

\section*{THANK YOU}```


[^0]:    Polygram Substitution

