

Functional units – Basic operational concepts – Bus Structures – Performance – Memory locations and addresses – Memory operations – Instruction and Instruction sequencing — Addressing modes – Assembly language – Case study : RISC and CISC Architecture.

Memory locations and addresses

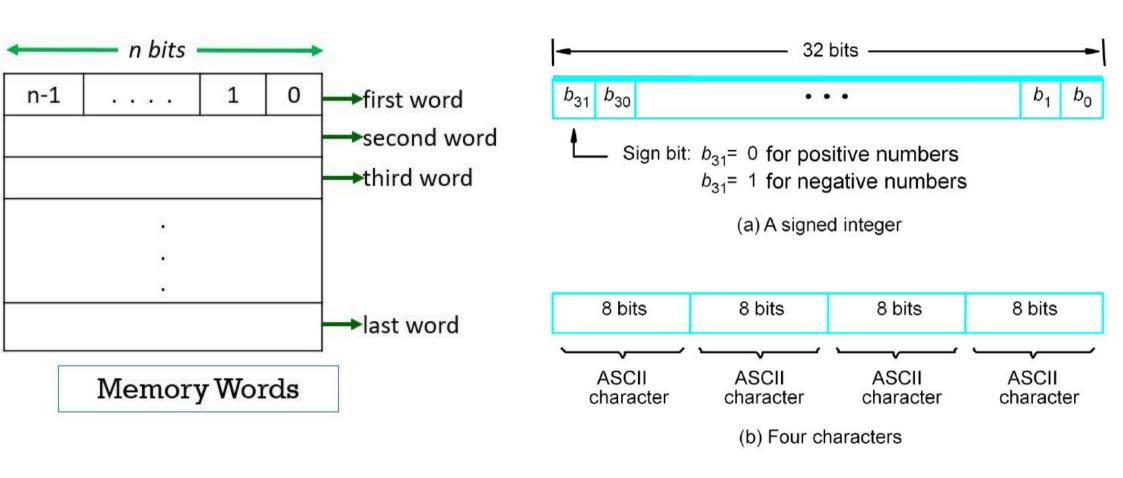
- Determine how the computer's memory is organized so that the user can efficiently store or retrieve information from the computer.
- Memory consists of many millions of storage cells (flip-flops).
- Each cell can store a bit of information i.e. 0 or 1

Memory locations and addresses

- Each group of n bits is referred to as a word of information, and n is called the word length.
- The word length can vary from 8 to 64 bits.
- A unit of 8 bits is called a byte.
- Accessing the memory to store or retrieve a single item of information (word/byte) requires distinct addresses for each item location. (O through 2^k-1 as the addresses of successive-locations in the memory).

Memory locations and addresses

- If 2^k = no. of addressable locations; then 2^k addresses constitute the address-space of the computer.
- For example, a 24-bit address generates an address-space of 2²⁴ locations (16 MB).
- A 32-bit address creates an address space of 2³² or 4G (4 giga) locations.



Byte Addressability

- A byte is always 8 bits, but the word length typically ranges from 16 to 64 bits.
- In byte-addressable memory, successive addresses refer to successive byte locations in the memory.
- Byte locations have addresses 0, 1, 2.....
- If the word-length is 32 bits, successive words are located at addresses 0, 4, 8. with each word having 4 bytes.

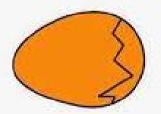
Byte Addressability

ASCII TABLE

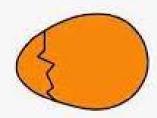
Decima	l Hexadecimal	. Binary	0ctal	Char	Decimal	Hexadecimal	Binary	0ctal	Char	Decimal	Hexadecimal	Binary	Octal	Char
0	0	0	0	[NULL]	48	30	110000	60	0	96	60	1100000	140	
1	1	1	1	[START OF HEADING]	49	31	110001	61	1	97	61	1100001	141	a
2	2	10	2	[START OF TEXT]	50	32	110010	62	2	98	62	1100010	142	b
3	3	11	3	[END OF TEXT]	51	33	110011	63	3	99	63	1100011	143	C
4	4	100	4	[END OF TRANSMISSION]	52	34	110100	64	4	100	64	1100100	144	d
5	5	101	5	[ENQUIRY]	53	35	110101	65	5	101	65	1100101	145	e
6	6	110	6	[ACKNOWLEDGE]	54	36	110110	66	6	102	66	1100110	146	f
7	7	111	7	[BELL]	55	37	110111	67	7	103	67	1100111	147	g
8	8	1000	10	[BACKSPACE]	56	38	111000	70	8	104	68	1101000	150	ĥ
9	9	1001	11	[HORIZONTAL TAB]	57	39	111001	71	9	105	69	1101001	151	i
10	Α	1010	12	[LINE FEED]	58	3A	111010	72	:	106	6A	1101010	152	j
11	В	1011	13	[VERTICAL TAB]	59	38	111011	73	;	107	6B	1101011	153	k
12	C	1100	14	[FORM FEED]	60	3C	111100	74	<	108	6C	1101100	154	I
13	D	1101	15	[CARRIAGE RETURN]	61	3D	111101	75	=	109	6D	1101101	155	m
14	Ε	1110	16	[SHIFT OUT]	62	3E	111110	76	>	110	6E	1101110	156	n
15	F	1111	17	[SHIFT IN]	63	3F	111111	77	?	111	6F	1101111	157	0
16	10	10000	20	[DATA LINK ESCAPE]	64	40	1000000	100	@	112	70	1110000	160	р
17	11	10001	21	[DEVICE CONTROL 1]	65	41	1000001	101	A	113	71	1110001	161	q
18	12	10010	22	[DEVICE CONTROL 2]	56	42	1000010	102	В	114	72	1110010	162	r
19	13	10011	23	[DEVICE CONTROL 3]	67	43	1000011	103	C	115	73	1110011	163	S
20	14	10100	24	[DEVICE CONTROL 4]	68	44	1000100	104	D	116	74	1110100	164	t
21	15	10101	25	[NEGATIVE ACKNOWLEDGE]	69	45	1000101	105	E	117	75	1110101	165	LI .
22	16	10110	26	[SYNCHRONOUS IDLE]	70	46	1000110	106	F	118	76	1110110	166	V
23	17	10111	27	[ENG OF TRANS. BLOCK]	71	47	1000111	107	G	119	77	1110111	167	W
24	18	11000	30	[CANCEL]	72	48	1001000	110	H	120	78	1111000	170	X
25	19	11001	31	[END OF MEDIUM]	73	49	1001001	111	I	121	79	1111001	171	У
26	1A	11010	32	[SUBSTITUTE]	74	4A	1001010	112	J	122	7A	1111010	172	Z
27	1B	11011	33	[ESCAPE]	75	48	1001011	. 113	K	123	7B	1111011	173	{
28	1C	11100	34	[FILE SEPARATOR]	76	4C	1001100	114	L	124	7C	1111100	174	
29	1D	11101	35	[GROUP SEPARATOR]	77	4D	1001101		M	125	7D	1111101		}
30	1E	11110	36	[RECORD SEPARATOR]	78	4E	1001110	116	N	126	7E	11111110		~
31	1F	11111		[UNIT SEPARATOR]	79	4F	1001111	. 117	0	127	7F	1111111	177	[DEL]
32	20	100000		[SPACE]	80	50	1010000	120	P					
33	21	100001		1	81	51	1010001	121	Q					
34	22	100010	42	а	82	52	1010010	122	R					
35	23	100011	43	#	83	53	1010011	123	5					
36	24	100100	44	\$	84	54	1010100	124	T					
37	25	100101	45	%	85	55	1010101	125	U	•				
38	26	100110	46	&	86	56	1010110	126	V					
39	27	100111		ì	87	57	1010111		W					
40	28	101000		(88	58	1011000	130	X					
41	29	101001)	89	59	1011001		Y					
42	2A	101010		*	90	5A	1011010		Z					
43	28	101011		+	91	58	1011011		1					
44	2C	101100		1	92	5C	1011100		1					
45	2D	101101		-	93	5D	1011101]					
46	2E	101110	56	1	94	5E	1011110	136	^					
47	2F	101111	57	I	95	5F	1011111	137	***	1				

Big-Endian and Little-Endian Assignments in Byte Addresses

- Big-Endian is used when lower byte addresses are used for the more significant bytes of the word
- Little- Endian is used when lower byte addresses are used for the less significant bytes of the word


Storage of the value D7C4₁₆

ig Endian


torola Processors: 1000, 68030, etc...

Little Endian

Intel Processors: 80386, Pentium, etc...

BIG ENDIAN - The way people always broke their eggs in the Lilliput land

LITTLE ENDIAN - The way the king then ordered the people to break their eggs

Word address	5	Byte address						
0	0	1	2	3				
4	4	5	6	7				
	•							
2 ^k - 4	2 ^k - 4	2 ^k - 3	2 ^k - 2	2 ^k - 1				

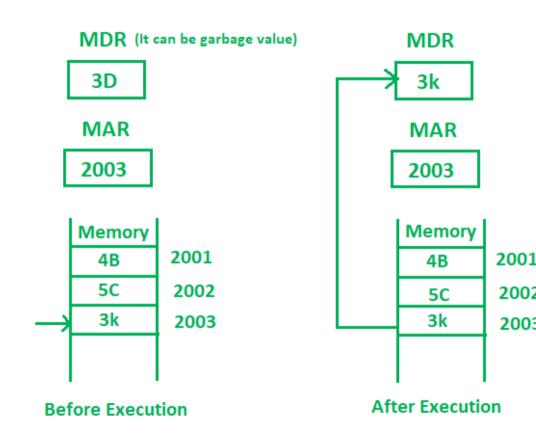
(a) Big-endian assignment

	Byte address									
0	3	2	1	0						
4	7	6	5	4						
			•							
2 ^k - 4	2 ^k - 1	2 ^k - 2	2 ^k - 3	2 ^k - 4						

(b) Little-endian assignme

Memory Operations

- Two basic operations are:
 - ✓ Load (or Read or Fetch)
 - ✓ Store (or Write)


Load Operations

Transfers a copy of the contents of a specific memory location to the processor

Memory contents remain unchanged

Processor sends the address of the desired location to the memory and request that its contents be read

Memory reads the data stored at that address and sends them to the processor

Memory Read Operation

- 1. What is computer architecture?
 - set of categories and methods that specify the functioning, organization, and implementation of computer systems
 - b) set of principles and methods that specify the functioning, organization, and implementation of computer systems
 - c) set of functions and methods that specify the functioning, organization, and implementation of computer systems
 - d) None of the mentioned

- 2. To reduce the memory access time we generally make use of _____
- a) SDRAM's
- b) Heaps
- c) Cache's
- d) Higher capacity RAM's

- 3. Who developed the basic architecture of computer?
 - a) Blaise Pascal
 - b) Charles Babbage
 - c) John Von Neumann
 - d) None of the above

4. Which of the following allows simultaneous write and reac operations?

- a) ROM
- b) EROM
- c) RAM
- d) None of the above

- 5. Computer address bus is
- a) Multidirectional
- b) Bidirectional
- c) Unidirectional
- d) None of the above

- 6. Which of the following is a way in which the components of a computer are connected to each other?
- a) Computer parts
- b) Computer architecture
- c) Computer hardware
- d) None of the above

7. Which of the following circuit convert the binary data into a decimal?

- a) Decoder
- b) Encoder
- c) Code converter
- d) Multiplexer

- 8. The address in the main memory is known as -
- a) Logical address
- b) Physical address
- c) Memory address
- d) None of the above

9. The collection of 8-bits is called as -

a) Byte

b) Nibble

c) Word

d) Record

10. Which of the following register can interact with the secondary storage?

a) PC

b) MAR

c) MDR

d) IR

11. Which of the following register keeps track of the instructions stored in the program stored in memory?

- a) Accumulator
- b) Address Register
- c) Program Counter
- d) Index Register

- 12. Which of the following is correct about memory and storage?
- a) Memory is temporary, Storage is temporary
- b) Memory is temporary, Storage is permanent
- c) Memory is permanent, Storage is temporary
- d) Memory is slow, Storage is Fast

TEXT BOOK

Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6th Edition 2012.

REFERENCES

- 1. David A. Patterson and John L. Hennessey, "Computer organization and design", MorganKauffman ,Elsevier, 5th edition, 2014.
- 2. William Stallings, "Computer Organization and Architecture designing for Performance", Pearson Education 8th Edition, 2010
- 3. John P.Hayes, "Computer Architecture and Organization", McGraw Hill, 3rd Edition, 2002
- 4. M. Morris R. Mano "Computer System Architecture" 3rd Edition 2007
- 5. David A. Patterson "Computer Architecture: A Quantitative Approach", Morgan Kaufmann; 5th edition 2011

THANK YOU