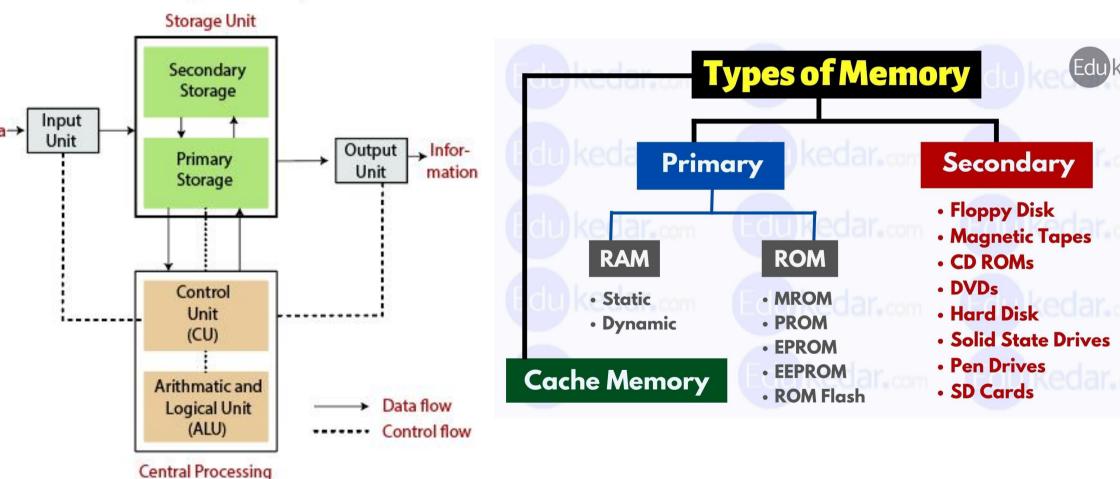


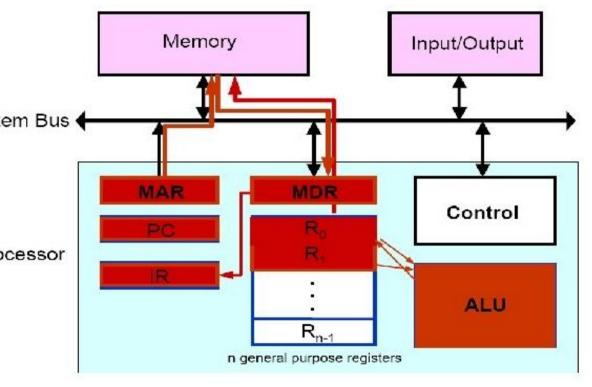
Performance – Memory locations and addresses – Memory operations – nstruction and Instruction sequencing — Addressing modes – Assembly anguage – Case study: RISC and CISC Architecture.

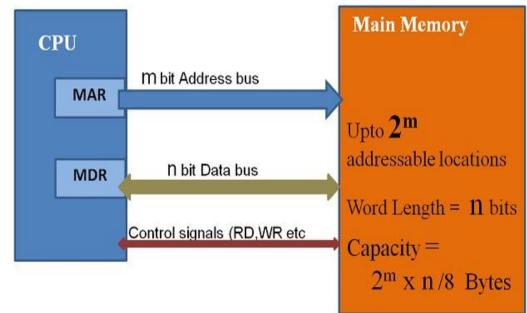


Block diagram of Computer

Functional Unit

4/14




Analysing how processor and memory are connected

- Processors have various registers to perform various functions
- Program Counter It contains the memory address of next instruction to be fetched.
- Instruction Register It holds the instruction which is currently being executed
- MDR It facilities communication with memory. It contains the data to be written into or read out of the addressed location.
- MAR It holds the address of the location that is to be accessed n general purpose registers that is R0 to Rn-1

Connection between Processor & Memory

Basic Operational Concepts

Instruction consists of 2 parts

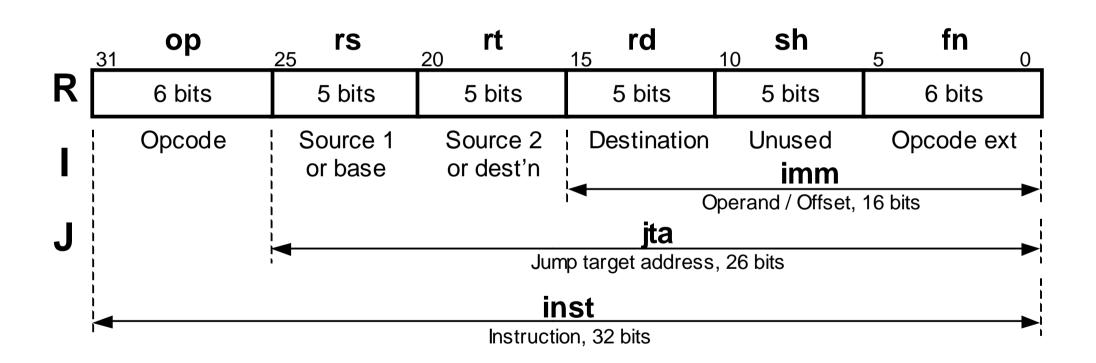
OPCODE

OPERANDS

Example

ADD LOCA, RO

Load LOCA, R1 Add R1, R0


Instructions Format

rs	rt	rd	shamt	funct	
5 bits	5 bits	5 bits	5 bits	6 bits	
rs	rt	constant or address			
5 bits	5 bits	16 bits			
	5 bits	5 bits 5 bits rs rt	5 bits 5 bits rs rt cons	5 bits 5 bits 5 bits rs rt constant or ac	

ор	Target Address
6 bits	26 bits

Instructions Format

9/1/

Translating Arm Assembly Instructions into Machine Instructions

op	rs	6	rt	rd	sham	t fund	ct	add \$t0, \$s1, \$s2	
6 bits	5 b	its	5 bits	5 bits	5 bits	6 bit			
								_	•
		special		\$ s1	\$s2	\$tO	0	add	
							•	•	
			0	17	18	8	0	32	
	_								
		00	0000	10001	10010	01000	00000	100000	

 $00000010001100100100000000100000_2 = 02324020_{16}$

Operating System

TEXT BOOK

Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6th Edition 2012.

REFERENCES

- 1. David A. Patterson and John L. Hennessey, "Computer organization and design", MorganKauffman ,Elsevier, 5th edition, 2014.
- 2. William Stallings, "Computer Organization and Architecture designing for Performance", Pearson Education 8th Edition, 2010
- 3. John P.Hayes, "Computer Architecture and Organization", McGraw Hill, 3rd Edition, 2002
- 4. M. Morris R. Mano "Computer System Architecture" 3rd Edition 2007
- 5. David A. Patterson "Computer Architecture: A Quantitative Approach", Morgan Kaufmann; 5th edition 2011

THANK YOU