

Plain carbon Steels

Composition:

Carbon upto 1.5%

Copper upto 0.6%

Manganese upto 1.65%

Silicon upto 0.6%

Types

1.Low Carbon steels (Carbon-Less than 0.25%)

2.Medium Carbon steels (Carbon- 0.25% to 0.60%)

3. High Carbon steels (Carbon- more than 0.60%)

Low carbon Steels (Carbon- Less than 0.25%)

Characteristics:

- ✓ Its Relatively soft and week
- The possess formability and Weldability
- They have outstanding ductility and toughness
- ✓ the microstructure of low-carbon steel consists of ferrite & pearlite
- ✓ Of all the steels , the low –carbon steels are least expensive to produce

Applications:

- Automobile body components
- ✓ Sheets that are used in pipelines , buildings, bridges and tin cans

Medium carbon Steels (Carbon- 0.25% to 0.60%)

Characteristics:

- ✓ Low hardenabilities
- ✓ High strength and hardness properties are achieved at the sacrifice of ductility and toughness

Applications:

- ✓ Railway wheels
- ✓ Railway tracks
- ✓ Gears
- ✓ Cranks shafts

High carbon Steels (Carbon- More then 0.60%)

Characteristics:

- ✓ Hardest and strongest of carbon steels
- ✓ They are the least ductile
- ✓ They have more wear resistant
- ✓ They are capable of holding a sharp cutting edge

Applications:

- Cutting tools and dies
- ✓ Razors
- ✓ Hacksaw blades
- ✓ High strength wire

Low Alloy Steels

- 1) AISI Steels
- 2) HSLA Steels

AISI Steels (American Iron and Steel Institute steels)

- Its an addition of elements Cr, Ni,Cu, Mn etc
- Generally used for Machine construction
- Also called **Construction steels** or **structural steels**

HSLA Steels (High strength low alloy steels)

They have different microstructure and require different heat treatments than that of plain carbon steels

High Alloy Steels

- 1) Tool and die Steels
- 2) Stainless Steels

Tool and die steels

- It's used for making tools and dies
- Special characteristics of hardenability, wear resistance,

Stainless steels

Its used for improving corrosion resistance

Stainless steels

- Stainless steels are alloys of iron, chromium and other elements that resist corrosion from many environments
- It is also called as Corrosion resistant steels or chromium behavior steels
- All true stainless steel contain minimum of about 12%Cr.
- This 12%Cr permits thin protective surface layer of chromium oxide to form when the steel is exposed to oxygen

Stainless steels

- Stainless steels are alloys of iron, chromium and other elements that resist corrosion from many environments
- It is also called as Corrosion resistant steels or chromium behavior steels
- All true stainless steel contain minimum of about 12%Cr.
- This 12%Cr permits thin protective surface layer of chromium oxide to form when the steel is exposed to oxygen

Types of Stainless steels

- It is classified basis of the predominant phase constituent of the microstructure.
- 1) Austenitic stainless steels
- 2) Ferritic stainless steels
- 3) Martensitic stainless steels

Austenitic Stainless steels

Composition

C- 0.03 to 0.15%

□ Mn- 2 to 10%

□ Si- 1 to 2%

Cr- 16 to 26%

■ Ni- 3.5 to 22%

Properties

□ Highest corrosion resistance

Good strength

□Non magnetic

□ Very tough and can be welded , forged or rolled

Martensitic Stainless steels

Composition

- **C** 0.1 to 1.5%
- **□**Mn-1 %
- □Si-1%
- Cr- 12 to 25%

Properties

Good ductility , hardness and thermal conductivity

Good toughness and corrosion resistance

Low Alloy Steels

- 1) AISI Steels
- 2) HSLA Steels

AISI Steels (American Iron and Steel Institute steels)

- Its an addition of elements Cr, Ni,Cu, Mn etc
- Generally used for Machine construction
- Also called **Construction steels** or **structural steels**

HSLA Steels (High strength low alloy steels)

They have different microstructure and require different heat treatments than that of plain carbon steels

High Alloy Steels

- 1) Tool and die Steels
- 2) Stainless Steels

Tool and die steels

- It's used for making tools and dies
- Special characteristics of hardenability, wear resistance,

Stainless steels

Its used for improving corrosion resistance

Composition of Cast Irons

- Carbon -3.0 to 4.0%
- Silicon- 1.0 to 3.0%
- ✤ Manganese 0.5 to 1.0%
- Sulphur- upto 0.1%
- Phosphorus upto 1.0%

Non-Ferrous Materials

- □ All the metallic elements other than iron are referred as non ferrous materials
- Non ferrous materials are not produced in as great tonnages and are more costly than ferrous metals
- Non- ferrous materials are employed in current engineering due to the following characteristics

Lighter in weight

- □ Higher electrical and thermal conductivity
- □ Better resistance to corrosion
- □ Ease of fabrication

Various Non-Ferrous Materials

- Copper
- Aluminium
- Lead
- Magnesium
- Nickel
- **T**in
- 🗖 Titanium
- □ Zinc.

Copper and its alloys

Copper is one of the oldest and most widely used metals in industry

Principal Properties of pure copper		
Corrosion resistance	Very good	
Tensile Strength	220Mpa	
Young's Modulus	122.5Gpa	
Melting point	1083°C	

Properties of copper

Copper possess very high electrical conductivity .

□ Very high thermal conductivity

□ Very soft , ductile

□ It can be worked in hot or cold condition , but it can not be welded

Applications

- Manufacturing power cables, telephone cables , cables for computer networks
- Printed circuit boards
- Mainly used in the manufacturing of important alloys such as brass and bronze

- □ Its an alloy of copper and Zinc
- □ Sometimes, small amounts of other metals such as tin, lead, aluminium and manganese may be added
- Upto 36% Zinc
- □ Soft ductile and easily cold worked

Characteristics

- □ Brasses is stronger than copper
- Lower thermal and electrical conductivity than copper
- Very often 1 to 3% of lead is added to brass for improving its machining properties

Bronzes (Copper-tin alloys)

- □ Alloy of copper and tin
- □ High strength alloys with a good corrosion resistance than brasses
- □ It can be shaped or rolled in to wires , rods and sheets

□<u>Applications</u>

- Pump valves
- Bearings
- Marine castings
- Hydraulic values
- Gears

Non-Ferrous Materials

- □ All the metallic elements other than iron are referred as non ferrous materials
- Non ferrous materials are not produced in as great tonnages and are more costly than ferrous metals
- Non- ferrous materials are employed in current engineering due to the following characteristics

Lighter in weight

- □ Higher electrical and thermal conductivity
- □ Better resistance to corrosion
- □ Ease of fabrication

Various Non-Ferrous Materials

- Copper
- Aluminium
- Lead
- Magnesium
- Nickel
- **T**in
- 🗖 Titanium
- □ Zinc.

Aluminium and its alloys

Characteristics:

Light in Weight (one-third the weight of steel)

□ Soft ductile

□ High strength to weight ratio

□ High thermal and electrical conductivity

Melting Point	600°C	
Young's modulus	70.5 Gpa	
Tensile strength	45 Mpa	
Corrosion resistance	Very good	
Principal properties of pure Aluminium		

Applications:

- □ Making parts of aero plane, window frames, surgical instruments Etc.
- □ It is used as a reducing agent in the manufacturing of steels

□ Aluminium VS Copper

- □ The price of the aluminium is much lower than that of copper
- □ If equal weights of aluminium and copper conductors of a given length are compared, it is found that aluminium conducts 201% as much current as does copper

Types of Aluminium alloys

□ Heat-treatable aluminium alloys

□ Al-Cu alloys

Al-Cu- Ni alloys

□ Al-Mg-Si alloys

□ Al-Zn-Cu alloys

□ Al-Li alloys

□ Non-heat treatable aluminium alloys

□ Al-Mn alloys

□ Al-Mg alloys

Al-Si alloys

- □ It is the important method of improving the physical properties of some of the non-ferrous alloys by solid state reaction
- □ Its is mostly applicable to the alloys of aluminium, magnesium and nickel.

Alloys that are hardened by precipitation treatment:

- □ Aluminium copper
- Copper –tin
- □ Magnesium aluminium
- □ This processed is called precipitation hardening because the fine precipitate particles of the new phase are formed in this hardening process

Solution treatment:

- Alloy is heated above the solvus temperature to obtain its solid solution
- The alloy is held at this temperature until a solid solution α is formed
 Temp: 500°C to 548°C

Quenching Process

Ageing Process

- □ Solid solution is heated below the solvus temperature
- \Box At this ageing temperature, the diffusion of unstable α may take place and precipitate particles can form
- □ Then, if we hold the alloy for a sufficient time at the ageing temperature, the stable α + CuAl₂ structure is produced
- \Box The fine precipitate particles of CuAl₂ increase the hardness and strength of the alloy

- □ It is the important method of improving the physical properties of some of the non-ferrous alloys by solid state reaction
- □ Its is mostly applicable to the alloys of aluminium, magnesium and nickel.

Alloys that are hardened by precipitation treatment:

- □ Aluminium copper
- Copper –tin
- □ Magnesium aluminium
- □ This processed is called precipitation hardening because the fine precipitate particles of the new phase are formed in this hardening process

Solution treatment:

- Alloy is heated above the solvus temperature to obtain its solid solution
- The alloy is held at this temperature until a solid solution α is formed
 Temp: 500°C to 548°C

Quenching Process

Ageing Process

- □ Solid solution is heated below the solvus temperature
- \Box At this ageing temperature, the diffusion of unstable α may take place and precipitate particles can form
- □ Then, if we hold the alloy for a sufficient time at the ageing temperature, the stable α + CuAl₂ structure is produced
- \Box The fine precipitate particles of CuAl₂ increase the hardness and strength of the alloy