

Introduction

List the Major Types of MATERIALS

Metals

Ceramics

Composites

Advanced materials

- An alloy is a mixture of two or more metals or non metals
- The element which is present in the largest proportion is called the **base metal**, and all other elements present are called **alloying elements**

Solid Solutions

Solution

- A solution is a homogeneous mixture composed of two or more substances. In such a mixture, a solute is a substance dissolved in another substance, known as a solvent.
- The solvent is a chemical substance and can be in a solid, liquid or gaseous state. Thus solution can exist in a gaseous, liquid or solid state.

Solid Solutions

A solid solution may be defined as a solid that consists of two or more elements atomically dispersed in a single-phase structure

The amount of solute that may be dissolved by the solvent is generally a function of temperature (with pressure constant) and usually increases with increasing temperature

Solid Solutions

Cooling Curve for the solidification of 50 % antimony and 50 % bismuth alloy (Cooling Curve for an Alloy)

Substitutional solid solutions

 (i)Random
 (ii)Ordered

Interstitial solid solutions

Substitution solid solution

Solvent metal atom

Solute element atom

A 12 A

In the formation of a Substitutional solid solution, the solute atoms do not occupy any specific position but are distributed at random in lattice structure of the solvent. This alloy is said to be in a random or disordered condition.

Examples: Copper-Zinc

If the solute and solvent atoms take up some preferred position, then the solution is called ordered Substitutional solid solution.

Examples: Gold-Copper

- In interstitial solid solution, the solute atoms fit into the space between the solvent or parent atoms. These spaces or voids are called interstices.
- Interstitial solid solution can form only when one atom is much larger than another.
- Examples: Iron- Carbon

Interstitial solid solution

- It is the graphical representations of what phases are present in a materials system at various temperatures, pressures and compositions
- It is also known as equilibrium diagrams (or) constitutional diagrams

- Phase can be defined as a physically distinct and chemically homogeneous portion of a system that has a particular chemical composition and structure
- Examples: Water in liquid or vapor state is single phase. Ice floating on water is an example two phase system.

Single Phase

■ Three forms of water – ice, water , water vapour

Illustration of phases

Illustration of phases and solubility

 (a) The three forms of water – gas, liquid, and solid – are each a phase.

- (c) Salt and water have limited solubility.
- (d) Oil and water have virtually no solubility.

Phase diagram of a pure substance (one component phase diagram)

Phase diagram of water (not to scale)

The number of phases present in any alloy depends upon the number of elements of which is alloy is composed

$$F = C - P + 2$$

Where,

F= Degrees of freedom of system or number of variables (temp, pressure, or composition etc) that may be changed independently without altering the equilibrium

- C = No. of components
- P= Number phases present in the system

Isomorphous binary Phase diagrams

Example:

- Copper-Nickel (Cu-Ni) System
- Antimony- Bismuth (Sb- Bi) System
- Gold Silver (Au-Ag) System
- Chromium Molybdenum (Cr- Mo) System

Isomorphous binary Phase diagrams

- Each element is soluble in the other element up to certain limit or saturation point. The value of this limit is a function of temperature
- If the two metals A and B are not completely soluble through all ranges in composition, then second phase will form at grain boundaries.
- Examples:
 - Copper- Silver (Cu-Ag) System
 - Lead- pin (Pb-Sn) System
 - Aluminium Copper (Al-Cu) System

Phase diagram for partial solid solubility

Phase diagram for partial solid solubility – Lead(Pb)-Tin(Sn)

- Six phase regions/fields are found in the diagram
- $\mathbf{\mu} \alpha$ solid solution phase
- $_{4}$ β solid solution phase
- \mathbf{a} solid + liquid phase
- ₄ β solid + liquid phase
- $\mathbf{4}$ α + β Solid Solution phase
- ₄ Liquid phase

[Eutectic - Greek work – Easily melted]

Eutectic Reaction

Peritectic Reaction

4 Examples: Iron-carbon system

Phase diagram Characteristics

Peritectoid Reaction

₄ Ex: Ni-Zn, **₄** Cu-Sn,

- 1) Ferrite (or α iron)
- 2) Austenite (or γ Iron)
- 3) Cementite (Fe_3C)
- 4) Pearlite (α Iron + Fe₃C)
- 5) Ledeburite (γ Iron + Fe₃C)
- 6) Martensite
- 7) Troosite
- 8) Sorbite
- 9) Bainite

Micro-Constituents of Iron-Carbon alloys

Micro-Constituents of Iron-Carbon alloys

BAINITE

The iron-iron carbide equilibrium diagram labeled with common names

- Pure iron exists in three allotropic forms before it melts
 - 🌞 α Iron
 - 🌼 δ– Iron
 - 🌞 γ Iron
- ***** Stables at temperatures up to 908°C (α Iron) –BCC
- ***** Stables between 908°C and 1388°C (γ Iron)-FCC
- ***** Stables between 1388° C and 1539° C(Melting Point). (δ – Iron) -FCC

Invariant reactions in the Fe-Fe₃C Phase Diagram

Peritectic reaction

Peritectic Reaction

Liquid (0.53%C) + δ Ferrite (0.09%C) $\stackrel{\underline{1495^{\circ}C}}{\longleftarrow} \gamma$ Austenite (0.17% C)

Eutectic reaction

The iron-iron carbide equilibrium diagram labeled with common names

Liquid (4.3%C)
$$\stackrel{\underline{1148}^{\circ}C}{\longleftarrow}$$
 γ Austenite(0.09%C) + Fe₃C(6.67%C)

Eutectoid reaction

$$\gamma \text{Austenite}(0.8\%\text{C}) \stackrel{\underline{723^{\circ}C}}{\longleftarrow}$$

 α Ferrite (0.02%C) + Fe₃C(6.67%C)

Steels are alloys of iron and carbon .

However steels contain other elements like silicon, manganese, sulphur, phosphorus, nickel etc.

Classification of steels:

1. Plain carbon steels.

(i) Low carbon steels

(ii) Medium carbon steels

(iii) High Carbon steels

2. Alloy Steels

- (i) Low alloy steels
- (ii) High alloy steels

- ✓ Its Relatively soft week
- \checkmark The possess formability and Weldability

Medium carbon Steels (Carbon- 0.25% to 0.60%)

Applications:

- ✓ Railway wheels
- ✓ Railway tracks
- ✓ Gears
- ✓ Cranks shafts

Alloy Steels

- Any steels other than carbon steels
- The steels products manual defines alloy steels as that exceed one or more of the following limits

Low Alloy Steels

- 1) AISI Steels
- 2) HSLA Steels

High Alloy Steels

- 1) Tool and die Steels
- 2) Stainless Steels

Cast Irons

- Carbon Greater than 2% carbon
- Its also Contain small amounts of silicon, sulphur, manganese and phosphorous
- Features of cast iron
- \checkmark Least expensive . Plentiful resources next to aluminium
- ✓ Good mechanical rigidity and good strength under compression
- \checkmark Good machinability can be achieved

Composition of Cast Irons

- Carbon -3.0 to 4.0%
- Silicon- 1.0 to 3.0%
- Manganese 0.5 to 1.0%
- Sulphur- upto 0.1%
- Phosphorus upto 1.0%

	Cast	Iron	
Gray Cast	White Cast	Nodular (Ducti	le) Malleable Cast
Iron	Iron	Cast Iron	Iron

Cast Irons

