

TOPIC: 3 - SOLUTION OF STANDARD TYPES OF FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

Define : Singular Integral Let fox, y, z, p, q)=0. ->0 Let the complete integral be q (x, y, z, a, b) =0 >0 Diff (D) p.w.r.to a 4b in turn we get $\frac{2q}{2a} = 0 \rightarrow (D)$ and $\frac{\partial q}{\partial b} = 0 = \frac{\partial q}{\partial b}$ The elimination of a 4 b from the three equations (), () & () if it exists, is called the singular Integral. Type: 1 & (P. 9)=0. [The equations contain & and q only] Suppose that z= ax + by+c is a trial solution of \$CP,92=0. where p=a. q=b we get flabe Here all be are the constant. Eliminate, any one constant we get the complete solution.

SNS COLLEGE OF ENGINEERING Coimbatore – 641 107 1. Find the complete solution of VF+V9=1 Sol: Given VP + Vg = 2. 0 This equation of the form of (P. 9)=0. Hence the trial solution is z=ax+by+c+@ where p=a & q=b Substitute in eqn O we get $\sqrt{a} + \sqrt{b} = 1$ =) VE = 1 - Va = VE = (1 - Va) :. z = ax + (1-va) y+c. 2. p+q=pq. The could be solutioned sol: Given p+9=p9→0 This equation of the form f(P.q)=0 Hence the trial solution is z=ax+by+c-so) where p=a & q=b and g cul substitute in eqn D, we get > bzabza Here $a = bc_1 - a = a$ $b = bc_1 - a = a$ $b = bc_1 - a = a$ The complete solution is z= an+ (a) y+ c

8)
$$p^2 + q^2 = npq$$
.
Sol: Given $p^2 + q^2 = npq$.
This eqn is of the form $z = ax + f(p,q) = 0$
Hence the trial solution is $z = ax + by + c$
where $p = a + q = b$
 $a^2 + b^2 = mab$
 $b^2 - nab + a^2 = 0$
 $b = \frac{na \pm \sqrt{a^2 m^2 + a^2}}{2}$
 $= \frac{a}{2} \left[n \pm \sqrt{m^2 + a} \right]$
The complete solution is
 $z = az + \frac{a}{2} \left[n \pm \sqrt{m^2 + a} \right] y + c$.

SNS COLLEGE OF ENGINEERING

Coimbatore – 641 107

(Fr) Sol: Given the form \$ (p, 9)=0 This eqn of Hence the trial solution is z=0x+by+c where p=a & q=b the strugular to find a-36= =) 3b = b - a=) $b = \frac{b - a}{-3} = -2 + \frac{a}{3}$ tomit of the yez The complete solution is at and $z = axt\left(\frac{2+a}{3}\right)y + c.$ 6 p-9=0. Sol: Given p-9=0. This eqn of the form f(\$,9)=0 Hence the trial solution is z=ax+by+c ->@ Sub. Dino, Here pa 29=6 a-6-0 b=a. The complete solution is Z= ax + ay+c = a(x+y)+c

SNSCE/ S&H/ UNIT 1/ PDE/1.3 - SOLUTION OF STANDARD TYPES / D.Shila/AP/MATHS Page 4/11

Type: 2 clainaut's form $Z = p \alpha + q y + f(p,q).$ This eqn of the form z= px+9y+f(p,9). The complete integral is z=ax+by+f(a,b) To find the singular integral Diff pour to akb. we get the solution in terms of x, y, z. To find the general solution put b = f(a)Eliminate a we get the general solution. 6 5 9.00 1. solve: z=px+qyt pq Given. Given Z=px+9y+pg-20 This eqn is of the form z= px+9y+ f(p.9)-20 : The complete integral is z=axtby+fra,b To find singular integral Diff p.w.m.to ak b. $\frac{\partial z}{\partial a} = 0 \Rightarrow \chi + b = 0$ => $b = -\chi$

SNS COLLEGE OF ENGINEERING

Coimbatore – 641 107

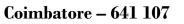
 $\frac{\partial z}{\partial b} = 0 =$) y + a = 0=) a = -y. Hence this : z = (-y) z + (-x) y + (-y) (-x) = -xy - 2y + x/y z = -2y z + 2y = 0.which is a singular solution. To get the general integral put befla) in eqn O. z=ax+fia)y+afia) -)(3) Diffp. w. r to a, <u>Dz</u> = 0. =) x+f'(a)y+a f'(a)+f'(a)=0-> () Elininati a between (A & E we get the general solution. 2 = px+qy+p=q= Sol: Geren z= px+qy+p=q+ ____ This eqn of the form z= px+ qy+ fcr. 2-@ The complete integral is z = aatby + fla, b)

SNS COLLEGE OF ENGINEERING **Coimbatore – 641 107** To find Singular integral Diff p.w. nto at b. DZ => x + 2a=0 2a -- x a= -2 $\frac{\partial z}{\partial b} = 0 \Rightarrow y - ab = 0;$ $\Rightarrow y = 2b$ $\Rightarrow b = \frac{y}{a}.$ Sub a, bin (), loop all lop of $Z = -\frac{\chi^2}{2} + \frac{y^2}{2} + \frac{\pi^2}{4} - \frac{y^2}{4}.$ $= \frac{-2\alpha^2 + 2y^2 + x^2 - y^2}{4}$ 2001/2. For - 22+24 2 000 1000 Az = ye x2 is the singular integral To find the general integral Put b= fias in @ $Z = a \alpha + f(\alpha) y + \alpha^2 - (f(\alpha))^2 + (f(\alpha))$ Dz =0 Da D x+ \$'ca)y+2a - 2\$(a). \$'(a)=0-23 Eliminate à herveen @ 4 @ we get - 1 colution

(a) Selve:
$$Z = px + qy + \sqrt{p^2 + q^2 + 1}$$

 \xrightarrow{Sel} :
Given $Z = px + qy + \sqrt{p^2 + q^2 + 1}$
This eqn is of the form $Z = px + qy + f(p,q)$
 \therefore The complete integral is
 $Z = ax + by + f(a, b)$
(ii) $Z = ax + by + \sqrt{a^2 + b^2 + 1}$ \longrightarrow
To find \therefore singular integral
Diff $p. w. Tr to a d b$.
 $\xrightarrow{SZ}{pa} = a \xrightarrow{>} x + \frac{1}{2} (a^2 + b^2 + 1)^{-\frac{1}{2}} = 2a = 0$
 $\Rightarrow x + \frac{a}{\sqrt{a^2 + b^2 + 1}} = 0$
 \overrightarrow{w} . $x = -\frac{a}{\sqrt{a^2 + b^2 + 1}}$
 \overrightarrow{w} . $x = -\frac{a}{\sqrt{a^2 + b^2 + 1}}$
 \overrightarrow{w} . $y = -\frac{b}{\sqrt{a^2 + b^2 + 1}} = 0$
 $\Rightarrow y + \frac{b}{\sqrt{a^2 + b^2 + 1}} = 0$
 $\Rightarrow y = -\frac{b}{\sqrt{a^2 + b^2 + 1}} = 0$
 \overrightarrow{w}
 $x^2 + y^2 = -\frac{a^2}{a^2 + b^2 + 1} + -\frac{b^2}{a^2 + b^2 + 1}$

SNS COLLEGE OF ENGINEERING



$$\begin{aligned} 1 - (x^{2} + y^{2}) &= 1 - \frac{a^{2} + b^{2}}{a^{2} + b^{2} + 1} \\ 1 - x^{2} - y^{2} &= \frac{a^{2} + b^{2} + 1 - a^{2} + b^{2}}{a^{2} + b^{2} + 1} \\ 1 - x^{2} - y^{2} &= \frac{1}{a^{2} + b^{2} + 1} \\ 1 - x^{2} - y^{2} &= \frac{1}{a^{2} + b^{2} + 1} \\ \sqrt{1 - x^{2} - y^{2}} &= \frac{1}{\sqrt{1 - x^{2} + y^{2}}} \end{aligned}$$

$$(\textcircled{O} =) \quad x = -a\sqrt{1 - x^{2} + y^{2}} \Rightarrow a = \frac{-x}{\sqrt{1 - x^{2} + y^{2}}} \\ (\textcircled{O} =) \quad x = -a\sqrt{1 - x^{2} + y^{2}} \Rightarrow b = \frac{-x}{\sqrt{1 - x^{2} + y^{2}}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \Rightarrow b = \frac{-y}{\sqrt{1 - x^{2} + y^{2}}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \Rightarrow b = \frac{-y}{\sqrt{1 - x^{2} + y^{2}}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \Rightarrow b = \frac{-y}{\sqrt{1 - x^{2} + y^{2}}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \Rightarrow b = \frac{-y}{\sqrt{1 - x^{2} + y^{2}}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \Rightarrow \frac{-y^{2}}{\sqrt{1 - x^{2} + y^{2}}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \Rightarrow \frac{-y^{2}}{\sqrt{1 - x^{2} + y^{2}}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \Rightarrow \frac{-y^{2}}{\sqrt{1 - x^{2} + y^{2}}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \Rightarrow \frac{-y^{2}}{\sqrt{1 - x^{2} + y^{2}}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\textcircled{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\overbrace{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\overbrace{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\overbrace{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\overbrace{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\overbrace{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\overbrace{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\overbrace{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\overbrace{O} =) \quad y = -b\sqrt{2 + x^{2} + y^{2}} \\ (\overbrace{O} =) \quad y =$$

put b= flas in (). z= ax + f(a) y+V1+a2+(f(a))2 -2) Diff @ p.w.r.to a. 0 = x+ f(a)y +1 (1+ d+ (fa))2) = a (2a+ 2 fias. f'ras) $0 = x + f(a) y + \frac{a + f(a) f(a)}{\sqrt{1 + a^2 + (f(a))^2}} \rightarrow (5)$ Eliminate a' between @ 20 we get the general solution. (A) Z= px+ qy - 2 Vpq it is inpo with Sol: This eqn is of the form z=px+qy+f(p,q) The complete integral is z= ax+by+fra,b) To find singular integral Diff p.w.r. to atbin () and as a set of a set of the set =) x+0-21 (ab) = 0 $x = (ab)^{\frac{-1}{2}} b$

Cal ab .6 0