

SNS COLLEGE OF ENGINEERING

(Autonomous) DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Artificial Intelligence & Machine Learning

K-Nearest Neighbor Algorithm

Prepared by, P.Ramya Assistant Professor/ECE SNS College of Engineering

KNN

- K-Nearest Neighbors (KNN)
- Simple, but a very powerful classification algorithm
- Classifies based on a similarity measure
- Non-parametric
- Lazy learning
- Does not "learn" until the test example is given
- Whenever we have a new data to classify, we find its K-nearest neighbors from the training data

KNN: Classification Approach

Classified by "MAJORITY VOTES" for its neighbor classes

Assigned to the most common class amongst its Knearest neighbors (by measuring "distant" between data)

KNN: Example

KNN: Pseudocode

- Step 1: Determine parameter K = number of nearest neighbors
- Step 2: Calculate the distance between the query-instance and all the training examples.
- Step 3: Sort the distance and determine nearest neighbors based on the k-th minimum distance.
- Step 4:Gather the category Y of the nearest neighbors.
- Step 5: Use simple majority of the category of nearest neighbors as the prediction value of the query instance.

KNN: Example

KNN: Euclidean distance matrix

											-							
	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_{6}	\mathbf{x}_7	\mathbf{x}_8	\mathbf{x}_9	\mathbf{x}_{10}	\mathbf{x}_{11}	\mathbf{x}_{12}	\mathbf{x}_{13}	\mathbf{x}_{14}	\mathbf{x}_{15}	\mathbf{x}_{16}	\mathbf{x}_{17}	x ₁₈
\mathbf{x}_2	1.5																	
\mathbf{x}_3	1.4	1.6																
\mathbf{x}_4	1.6	1.4	1.3															
\mathbf{x}_5	1.7	1.4	1.5	1.5														
\mathbf{x}_{6}	1.3	1.4	1.4	1.5	1.4													
\mathbf{x}_7	1.6	1.3	1.4	1.4	1.5	1.8												
x 8	1.5	1.4	1.6	1.3	1.7	1.6	1.4											
\mathbf{x}_9	1.4	1.3	1.4	1.5	1.2	1.4	1.3	1.5										
x ₁₀	2.3	2.4	2.5	2.3	2.6	2.7	2.8	2.7	3.1									
\mathbf{x}_{11}	2.9	2.8	2.9	3.0	2.9	3.1	2.9	3.1	3.0	1.5								
\mathbf{x}_{12}	3.2	3.3	3.2	3.1	3.3	3.4	3.3	3.4	3.5	3.3	1.6							
x ₁₃	3.3	3.4	3.2	3.2	3.3	3.4	3.2	3.3	3.5	3.6	1.4	1.7						
x ₁₄	3.4	3.2	3.5	3.4	3.7	3.5	3.6	3.3	3.5	3.6	1.5	1.8	0.5					
\mathbf{x}_{15}	4.2	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	1.7	1.6	0.3	0.5				
x ₁₆	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	1.6	1.5	0.4	0.5	0.4			
x ₁₇	5.9	6.2	6.2	5.8	6.1	6.0	6.1	5.9	5.8	6.0	2.3	2.3	2.5	2.3	2.4	2.5		
\mathbf{x}_{18}	6.1	6.3	6.2	5.8	6.1	6.0	6.1	5.9	5.8	6.0	3.1	2.7	2.6	2.3	2.5	2.6	3.0	
\mathbf{x}_{19}	6.0	6.1	6.2	5.8	6.1	6.0	6.1	5.9	5.8	6.0	3.0	2.9	2.7	2.4	2.5	2.8	3.1	0.4

 Table 1. Euclidean distance matrix D listing all possible pairwise Euclidean distances between 19 samples.

Decision Boundaries

Voronoi diagram

- Describes the areas that are nearest to any given point, given a set of data.
- Each line segment is equidistant between two points of opposite class

Decision Boundaries

With large number of examples and possible noise in the labels, the decision boundary can become nasty!

"Overfitting" problem

Effect of K

Larger k produces smoother boundary effect
 When K==N, always predict the majority class

K=1

K=15

Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning)

P.Ramya/AI & Machine Learning/19EC503/KNN Algorithm

Discussion

Which model is better between K=1 and K=15? Why?

How to choose k?

Empirically optimal k?

P.Ramya/AI & Machine Learning/19EC503/KNN Algorithm

Pros and Cons

Pros

- Learning and implementation is extremely simple and Intuitive
- Flexible decision boundaries
- Cons
- Irrelevant or correlated features have high impact and must be eliminated
- Typically difficult to handle high dimensionality
- Computational costs: memory and classification time computation

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]

Dissimilarity

- Numerical measure of how different are two data objects
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies
- Proximity refers to a similarity or dissimilarity

Euclidean Distance

Euclidean Distance

$$dist = \sqrt{\sigma_k^p (a_k - b_k)^2}$$

Where p is the number of dimensions (attributes) and

 a_k and b_k are, respectively, the k-th attributes (components) or data objects a and b.

□Standardization is necessary, if scales differ.

Euclidean Distance

point	x	у
p1	0	2
p2	2	0
p3	3	1
p4	5	1

	p1	p2	p3	p4
թ1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Step by step process of Bayes Theorem

- •Prior or State of Nature
- •Class Conditional Probabilities
- •Evidence
- Posterior Probabilities

