SNS COLLEGE OF ALLIED HEALTH SCIENCE

DEPARTMENT OF CARDIAC TECHNOLOGY

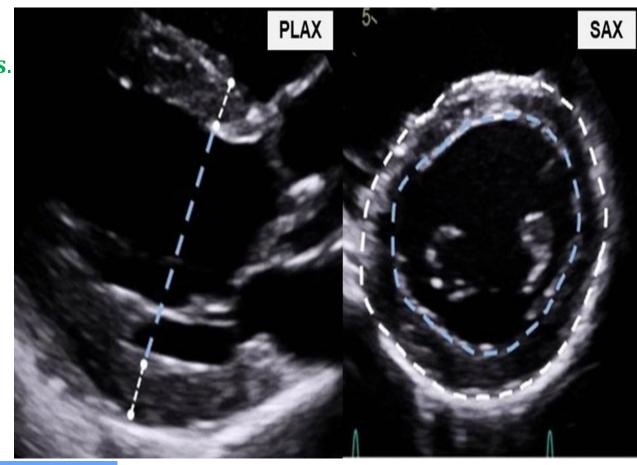
COURSE NAME: ECHOCARDIOGRAPHY

UNIT: SEGMENTAL ANALYSIS AND HEMODYNAMIC ASSESSMENT

TOPIC: ECHO ASSESSMENT OF LV DIASTOLIC DYSFUNCTION

FACULTY NAME: Ms. KAVIPRIYA S

INTRODUCTION

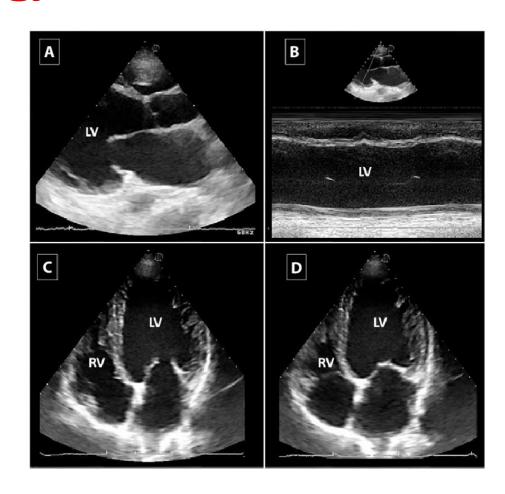


Left Ventricular Diastolic Function refers to the ability of

the left ventricle (LV) to relax, fill, and accommodate
blood during diastole at normal or low filling pressures.
It depends on myocardial relaxation, chamber
compliance, and left atrial-LV pressure relationships.

Diastole consists of:

- **✓** Isovolumic Relaxation
- ✓ Early Rapid Filling (E-wave)
- **✓** Diastasis
- **✓** Atrial Contraction (A-wave)

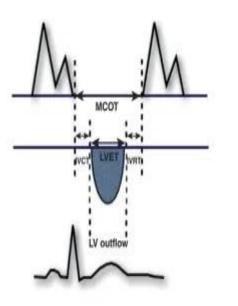


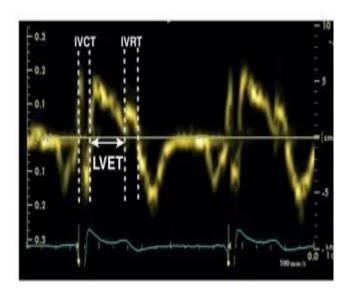
Physiology

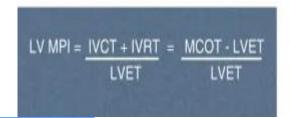
Normal diastolic filling requires:

- Active LV relaxation (energy-dependent)
- Elastic recoil
- Normal LV compliance
- Low LV filling pressures
- Intact LA function
- Impairment in any step → **diastolic dysfunction**.

Physiology



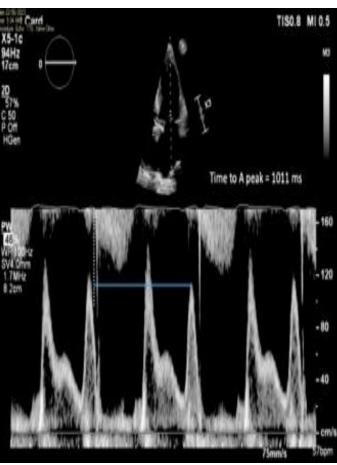

1. Isovolumic Relaxation Time (IVRT)


- a. Begins after aortic valve closure (S2)
- b. LV pressure falls rapidly
- c. No change in volume

2. Early Rapid Filling (E-wave)

- a. Mitral valve opens
- Passive suction and pressure gradient drive blood into LV
- c. Influenced by relaxation and elastic recoil

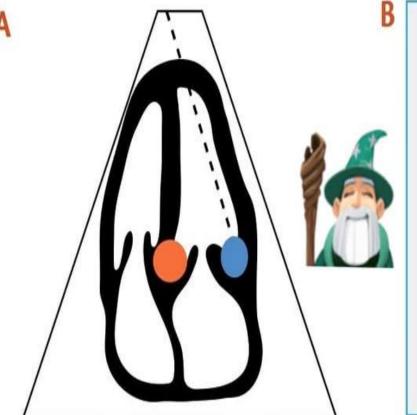
Physiology

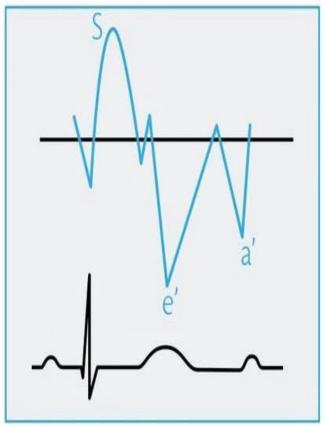

3. Diastasis

- a. Equalization of LA–LV pressures
- b. Minimal filling occurs

4. Atrial Contraction (A-wave)

- a. Active filling occurs due to atrial systole
- b. Contributes 20–30% of total filling (↑ with aging)

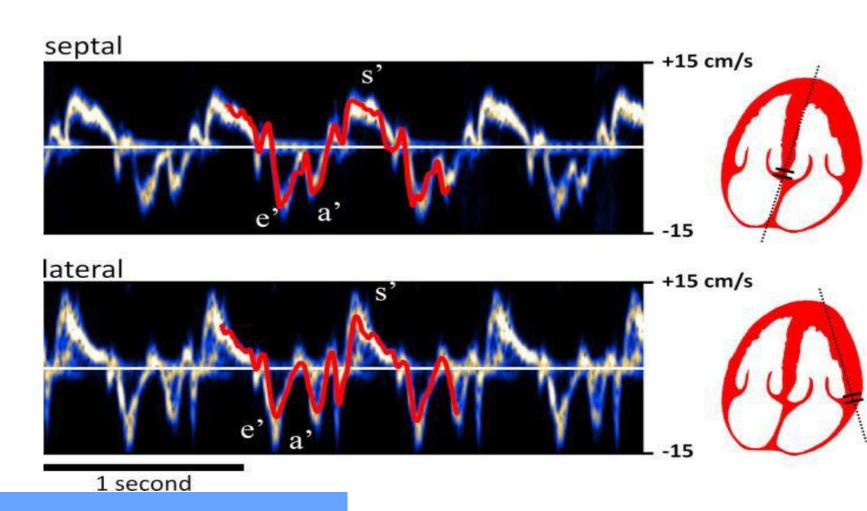

A. Mitral Inflow Doppler (PW Doppler)


Probe position: Apical 4-chamber,

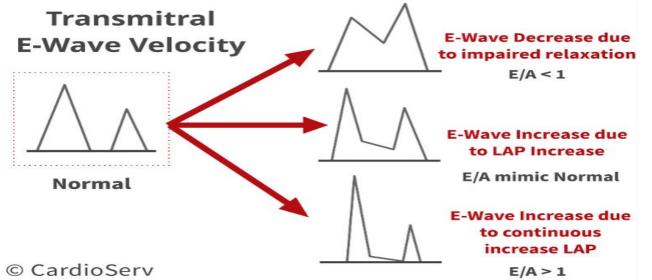
sample volume at leaflet tips

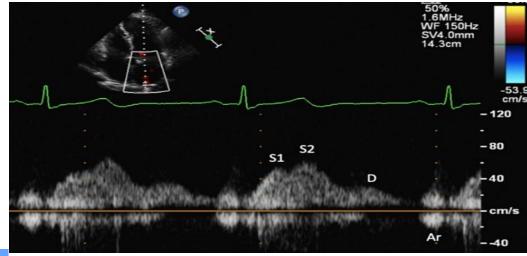
Measurements:

- 1. E-wave velocity (early filling)
- 2. A-wave velocity (atrial contraction)
- 3. E/A ratio
- 4. Deceleration Time (DT)



B. Tissue Doppler Imaging (TDI) – Mitral Annular e'

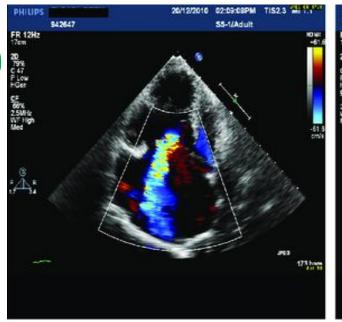

- a. Location:
- b. Septal e'
- c. Lateral e'
 Calculate **average e'**.

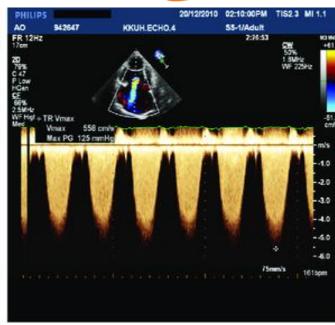

C. E/e' Ratio

- a. Reflects LV filling pressures
- b. $E \text{ (mitral inflow)} \div e' \text{ (TDI)}$

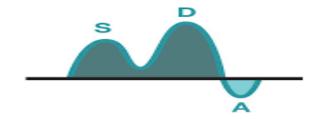
D. Left Atrial Volume Index (LAVI)

- a. Biplane method of disks
- b. Reflects **chronic LV filling pressure**



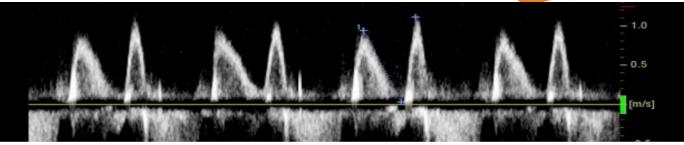

E. Tricuspid Regurgitation Velocity (TR Vmax)

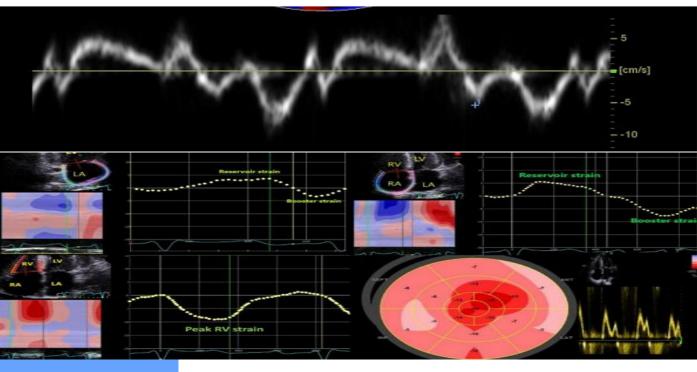
- a. Reflects pulmonary artery systolic pressure
- b. ↑ TR velocity suggests ↑ LA pressure


F. Pulmonary Vein (PV) Doppler

- a. Systolic (S) and Diastolic (D) flow
- b. Ar–A duration (atrial reversal)

Blunted Systolic Flow


G. IVRT (Isovolumic Relaxation


Time)

- a. Prolonged in impaired relaxation
- b. Short in restrictive filling

H. Strain Imaging (optional)

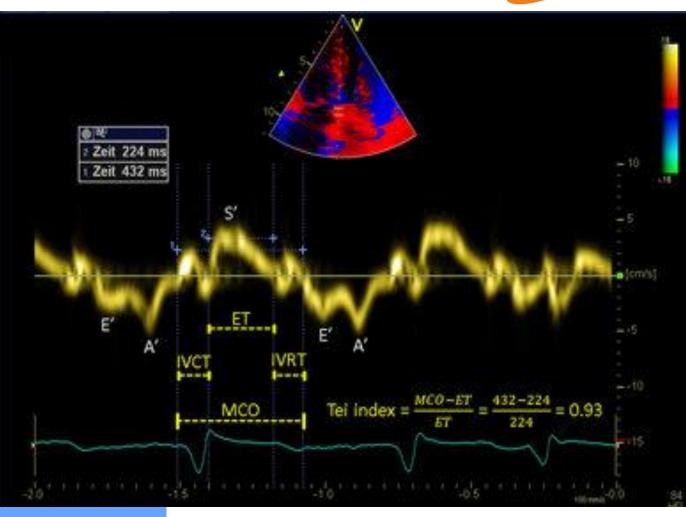
- a. LA reservoir strain
- b. LV strain patterns in HFpEF

Important Parameters and Interpretation

A. Mitral Inflow Patterns

Pattern	E/A Ratio	E velocity	DT	Meaning
Normal	1–2	Normal	160-240 ms	Normal relaxation
Grade I – Impaired relaxation	<0.8	Low	Prolonged	Low early filling
Grade II – Pseudonormal	0.8–1.5	Normal	Normal	Elevated LAP masks impairment
Grade III – Restrictive	>2	High	<160 ms	Severe ↑ LAP, ↓ compliance

Important Parameters and Interpretation



Tissue Doppler Imaging

Paramete r	Normal	Abnormal
Septal e'	>7 cm/s	<7 cm/s
Lateral e'	>10 cm/s	<10 cm/s
Average e'	>9 cm/s	<9 cm/s

E/e' Ratio

Value	Interpretation
<8	Normal LAP
8–14	Indeterminate
>14	Elevated LAP

Important Parameters and Interpretation

LA Volume Index (LAVI)

LAVI	Interpretation	
<34 mL/m ²	Normal	
>34 mL/m ²	Chronic elevation of LV filling	
7 J IIIIJ III	pressures	

Parameters	Cut-Off Value	
Average E/e'	> 14	
TR Velocity	> 2.8 m/s	
LA Volume Index	> 34 mL/m ²	

Non-Invasive Assessment LV Filling Pressures

TR Jet Velocity

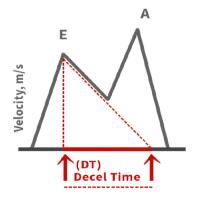
TR Vmax	Meaning
≤2.8 m/s	Normal
>2.8 m/s	Elevated PAP due to ↑ LAP

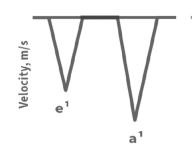
STEP 1: Determine if LV diastolic function is

normal or abnormal

Check 4 parameters:

- a. Average e' < 7-10 cm/s (reduced)
- b. E/e' > 14 (elevated filling pressure)
- c. LA volume index > 34 mL/m²
- d. TR velocity > 2.8 m/s
- ≥2 abnormal → diastolic dysfunction present
- **≤1** abnormal → normal diastolic function




STEP 2: Grade the Diastolic Dysfunction

GRADE I: Impaired Relaxation

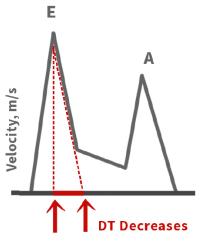
- a. E/A < 0.8
- b. E velocity < 50 cm/s
- c. Normal or low LAP
- d. LAVI normal or mildly ↑

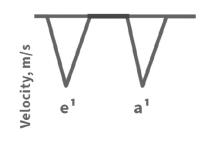
Impaired Filling Pattern

- 1. E-Wave Velocity ≤ 50 cm/sec
- 2. E/A Ratio ≤ 0.8
- 3. DT > 220 ms
- 4. Normal LAP

© CardioServ

GRADE II: Pseudonormal Filling


E/A 0.8-1.5


Normal-appearing mitral inflow

Supportive markers of ↑ LAP:

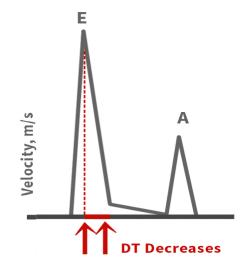
- a. E/e' > 14
- b. $LAVI > 34 \text{ mL/m}^2$
- c. TR Vmax > 2.8 m/s

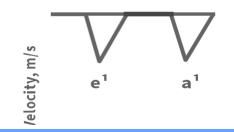
Pseudonormal Filling Pattern

- 1. E/A Ratio > 0.8 but < 2
- 2. E/e' Ratio > 14
- 3. Decreased e' velocity
- 4. Valsalva Maneuver E/A Reduced > 50%
- 5. Increased LAP

GRADE III: Restrictive Filling

 $E/A \ge 2$

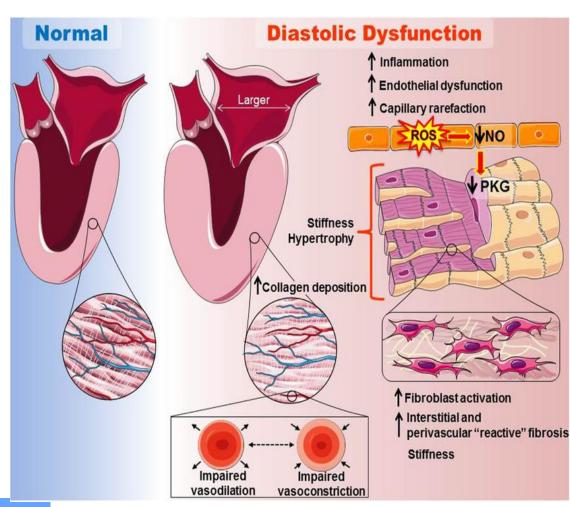

 $DT \le 160 \text{ ms}$


High E velocity

LAVI significantly ↑

Markedly ↑ LV filling pressures

Restrictive Filling Pattern

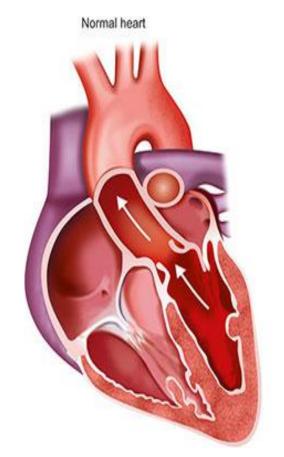

- **1.** E/A Ratio ≥ 2
- 2. DT < 160 msec
- 3. Decreased e' velocity
- 4. E/e' ratio > 14
- 5. Increased LAP

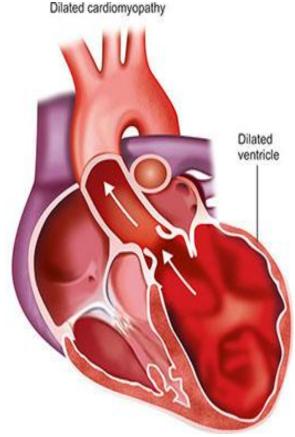
Clinical Significance

A. Diagnostic Importance

- 1. Identifies HFpEF (Heart Failure with Preserved EF)
- 2. Defines diastolic heart failure
- 3. Detects early LV dysfunction (even when EF is normal)
- 4. Evaluates **hypertensive heart disease**
- 5. Assesses LV hypertrophy and ischemia

Clinical Significance



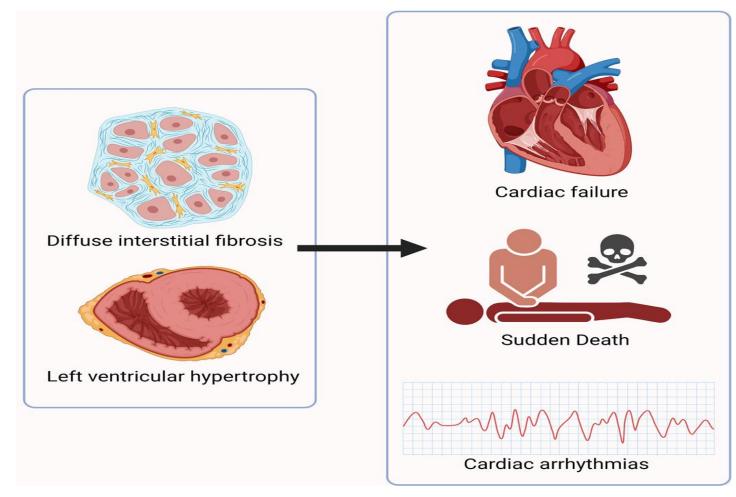

B. Prognostic Significance

Grade III has **poor prognosis**

Predicts:

- 1. Mortality in heart failure
- 2. Outcomes after MI
- 3. Outcomes in valvular heart disease
- 4. Post-surgical complications

Clinical Applications



Guides **fluid therapy** in ICU

Helps determine need for diuretics

Important for:

- 1. Atrial fibrillation
- 2. Cardiomyopathies
- 3. Pulmonary hypertension
- 4. Chronic kidney disease
- 5. Diabetes mellitus

<7

<10

>14

>34

>2.8

>30 ms

<1

ECHO ASSESSMENT OF LV

DD/ECHOCARDIOGRAPHY/KAVIPRIYABALU/SNSCAHS

Normal

160-240 ms

>7 cm/s

>10 cm/s

 $<34 \text{ mL/m}^2$

≤2.8 m/s

<30 ms

<14

>1

Parameter

DT

Septal e'

Lateral e'

E/e' ratio

TR Vmax

11/28/2025

PV S/D ratio

Ar-A duration

LA volume index

21/22

Clinical Meaning

Reduced relaxation

Reduced relaxation

Chronic ↑ LAP

↑ LAP

↑ LVEDP

↑ PAP from ↑ LAP

Elevated filling pressure

Restrictive / impaired relaxation

Sumn	nary Tables	INSTITUTIONS

Tarameter	Norman	Abhormar	Chinear Meaning
E/A ratio	1–2	<0.8 or >2	Impaired relaxation / restrictive

<160 or >240 ms

Ahnormal

References

- 1. Feigenbaum's Echocardiography 8th Edition.
- Lippincott Williams & Wilkins; 2018.
- Chapters: LV Diastolic Function, Doppler Hemodynamics.
- 2.Textbook of Clinical Echocardiography Catherine M. Otto.
- Textbook of Clinical Echocardiography. 6th Edition. Elsevier; 2018.
- Chapter on Diastolic Function and Doppler Principles.
- 3. ASE/EACVI Diastolic Function Guidelines
- Nagueh SF, Smiseth OA, Appleton CP, et al.

Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography.