

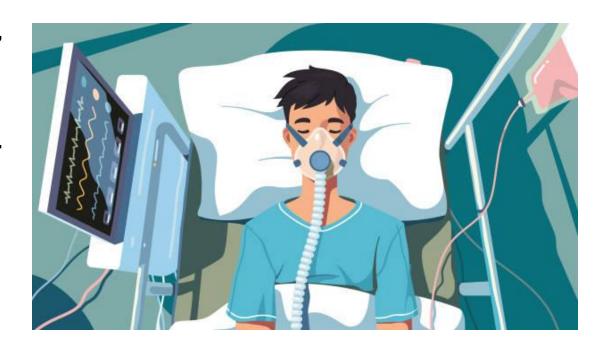
SNS COLLEGE OF ALLIED HEALTH SCIENCE

Affiliated to The Tamil Nadu Dr MGR Medical University, Chennai

DEPARTMENT OF CARDIOPULMONARY PERFUSION CARE TECHNOLOGY

COURSE NAME: CPB and Perfusion Technology

UNIT II – Perfusion Flow Pressure & Acid Base Balance & Adequacy


TOPIC: Oxygen Toxicity

FACULTY NAME: Mrs. Saranyaa Prasath

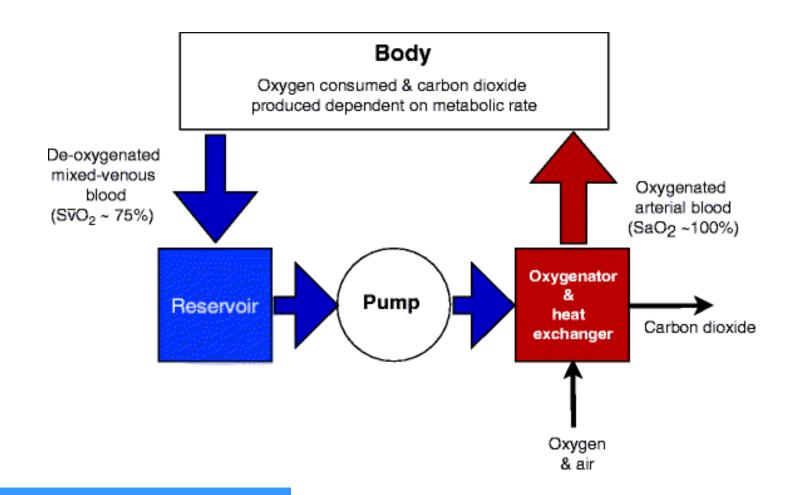
- CPB exposes patients to high oxygen tensions, risking oxygen toxicity.
- Patients, especially those with lung disease or undergoing prolonged bypass, are at higher risk.
- Perfusionists must balance adequate oxygenation with avoidance of oxidative injury.

- Hyperoxia during CPB increases production of reactive oxygen species (ROS), causing lung injury, myocardial dysfunction, and systemic inflammation.
- Oxygen toxicity manifests as lung damage, neurological injury, and worsened organ function.

Define: Mechanisms of Oxygen Toxicity

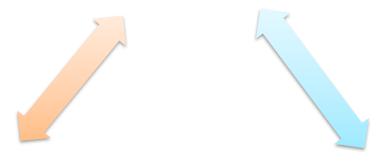
- High FiO₂ and PaO₂ increase ROS formation, overwhelming antioxidant defenses.
- ROS damage lipids, proteins, and DNA, leading to cellular injury.
- Ischemia-reperfusion injury is exacerbated by oxygen toxicity.

Ideate: Sweep Gas and FiO₂ Management


- Maintain PaO₂ between 150–250 mmHg during CPB for most adults.
- For normoxic strategy, aim for PaO₂ 100–150 mmHg, especially in pediatric or cyanotic patients.
- Adjust FiO₂ to achieve target PaO₂, typically starting at 30–50% and titrating as needed.

	Arterial Blood	Venous Blood
pH*	7.40 (7.35–7.45)	7.36 (7.33–7.43)
Po ₂ †	80-100 mm Hg	35-40 mm Hg
Pco ₂ ‡	35-45 mm Hg	41-51 mm Hg
HCO ₃ §	22-26 mEq/L	24-28 mEq/L
O_2 saturation $ $	<u>></u> 95%	70% - 75%
Base excess ¹	-2 to +2	0 to +4

Ideate: Sweep Gas Flow and V/Q Ratio


- Optimal sweep gas to blood flow ratio (V/Q) is 1:1, but 0.6–0.9 is often sufficient.
- Typical sweep gas flow: 1.35–1.60
 L/min/m² to avoid hypocapnia and alkalosis.
- Adjust sweep gas flow to maintain PaCO₂ 35–45 mmHg

Ideate: Perfusion Flow and Pressure Targets

Pump flow: 2–2.4 L/min/m² to maintain mean arterial pressure (MAP) 50–80 mmHg.

Monitor MAP, pump flow, and organ perfusion indices.

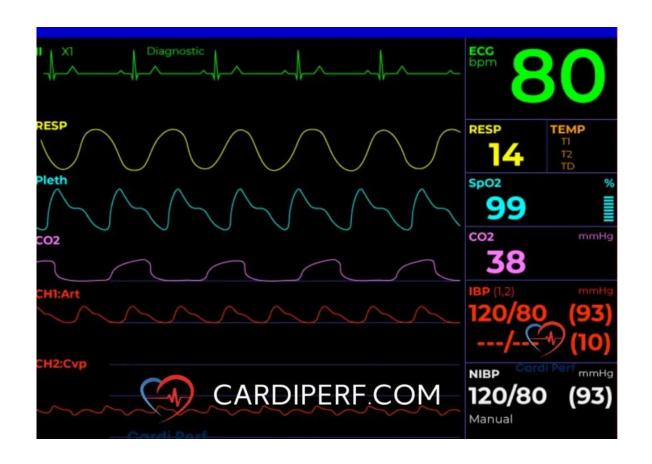
Ensure adequate perfusion to prevent tissue hypoxia without excessive pressure.

Use oxygenators with efficient gas exchange and low resistance.

Prime circuit with blood or colloid to minimize hemodilution.

Monitor
oxygenator
performance
and adjust
settings to avoid
hyperoxia.

Prototype: Intraoperative Monitoring and Adjustment


- Measure arterial blood gases every 15– 30 minutes.
- Titrate FiO₂ and sweep gas flow to maintain PaO₂ and PaCO₂ within target ranges.
- Adjust pump flow and pressure as needed for optimal perfusion.

Parameter	Normal Value	Normal Range	Clinical Significance
рН	7.40	7.35-7.45	Acid-base balance
PaO ₂ (mmHg)	80-100	75–100	Oxygenation status
PaCO ₂ (mmHg)	40	35-45	Respiratory status
HCO_3^- (mEq/L)	24	22-26	Metabolic status
Base Excess/Deficit	0	-4 to +2	Metabolic acid-base buffer
O ₂ Saturation (%)	95–100	94–100	Hemoglobin oxygen saturation
O ₂ Content (mL/dL)	20	18-20	Total oxygen in blood
Hemoglobin (g/dL)	14-18 (male)	12–16 (female)	Oxygen-carrying capacity

Prototype: Post-CPB and ICU Management

- Continue monitoring oxygenation and ventilation post-CPB.
- Wean FiO₂ gradually, aiming for normoxia.
- Address complications such as acute lung injury or neurological dysfunction

Test: Case Study Application

A patient develops acute lung injury post-CPB due to prolonged hyperoxia.

Management includes reducing FiO₂, optimizing ventilation, and supportive care.

Emphasize the importance of protocolized oxygen management.

Test: Summary and Key Takeaways

Pa₀

Maintain 150–
250 mmHg
(adults)

100–150
mmHg
(paediatric/cy
anotic).

sweep gas flow

1.35–1.60 L/min/m² FiO₂

30–50%, adjusting to blood gas results. **Ensure pump flow**

2-2.4 L/min/m²

MAP

50–80 mmHg for optimal perfusion.

References

- https://pmc.ncbi.nlm.nih.gov/articles/PMC3932148/
- https://www2.ccasociety.org/newsletters/2016winter/Oxygen%20Toxicity.html
- https://pmc.ncbi.nlm.nih.gov/articles/PMC4557568/
- https://repository.up.ac.za/bitstreams/cca5624c-c4d5-4a3c-9d4a-cfd2cfd52bd7/download
- https://pmc.ncbi.nlm.nih.gov/articles/PMC7332162/

THANK YOU