

SNS COLLEGE OF ALLIED HEALTH SCIENCE

Affiliated to The Tamil Nadu Dr MGR Medical University, Chennai

DEPARTMENT OF CARDIOPULMONARY PERFUSION CARE TECHNOLOGY

COURSE NAME: CPB and Perfusion Technology

UNIT II

TOPIC: Perfusion Flow Pressure

FACULTY NAME: Mrs. Saranyaa Prasath

EMPATHIZE: Why CPB Matters

Complex cardiac surgeries require temporary circulatory support CPB replaces heart and lung function during surgical intervention Critical
understanding:
adequate perfusion
maintains organ
viability

Challenge:
maintaining
balance between
flow and pressure

DEFINE: Flow, Pressure & Resistance

• Flow (F) = Pressure Difference (ΔP) / Resistance (R)

Ohm's Law for Hemodynamics

- **Flow:** Volume of blood moving through vessel (L/min)
- Pressure Difference (ΔP): MAP gradient driving circulation
- **Resistance:** Opposition to flow from vessel walls & viscosity

Electric current = Voltage/Resistance

$$I = \frac{V}{R}$$

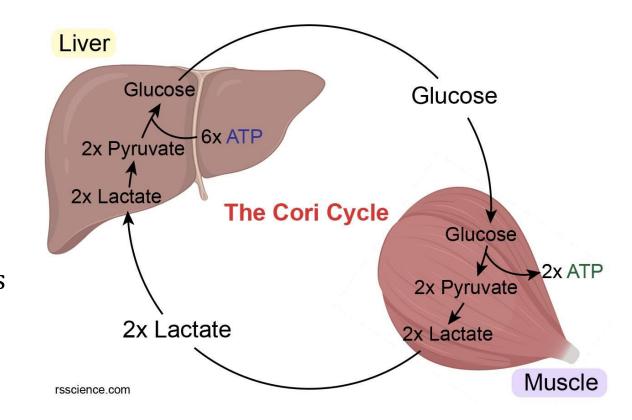
Ohm's law triangle

DEFINE: Pressure & Resistance Mechanisms

Mean Arterial Pressure (MAP)

- Normal: 70-100 mmHg during CPB
- MAP < 70 mmHg = Risk of organ hypoperfusion

Systemic Vascular Resistance


- Decreases during CPB due to loss of pulsatile flow
- Hypothermia & Hemodilution reduce resistance

IDEATE: Optimal Perfusion Flow Rates

- **Standard Flow:** 2.0-2.5 L/min/m² (normothermia)
- **Low Flow:** 1.2 L/min/m² (moderate hypothermia)
- **Deep Hypothermia:** 0.5-1.5 L/min/m²
- Clinical Decision: Flow rate selection depends on temperature management, surgical requirements, and organ perfusion needs

IDEATE: Oxygen Delivery During CPB

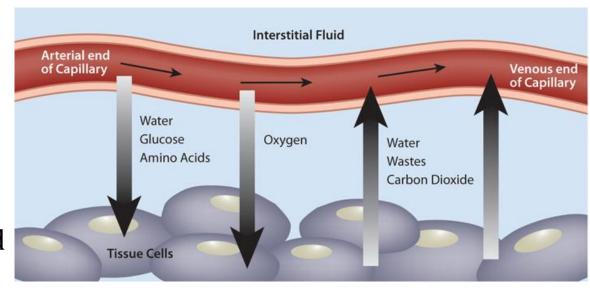
- Indexed Oxygen Delivery (iDO₂) = Flow × Hb × SaO₂ × 1.34 / Body Surface Area
- Flow: Pump output directly influences oxygen delivery
- **Hemoglobin (Hb):** Oxygen carrying capacity (affected by hemodilution)
- SaO₂: Arterial oxygen saturation (maintained ~100%)
- **Target iDO₂:** >250 mL/min/m² for adequate perfusion

Blood Collection

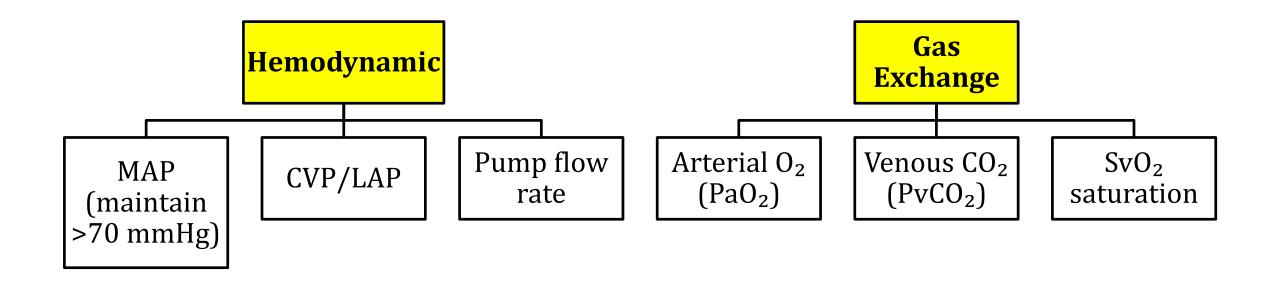
Venous drainage through cannulas → Reservoir → Pump **Oxygenation**

Membrane oxygenator with gas exchange (O₂ in, CO₂ out)

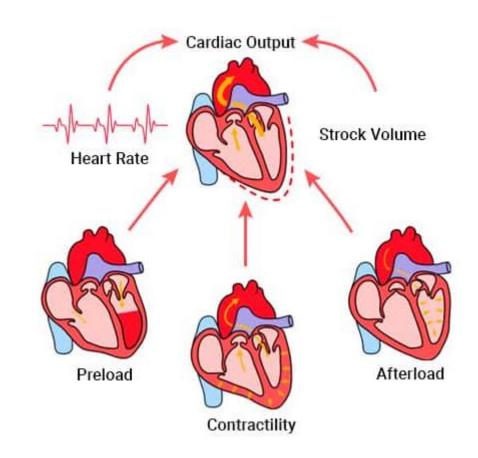
Blood Return


Arterial cannula to aorta delivers oxygenated blood

PROTOTYPE: Flow & Pressure Independence


Critical CPB Principle: Unlike normal physiology, flow and pressure are independent during CPB

- Increased MAP does NOT automatically increase organ perfusion
- Adequate pump flow is essential for tissue oxygenation
- Kidney perfusion primarily dependent on pump flow rate
- Cerebral perfusion influenced by both pressure and PaCO₂
- **Clinical Pearl:** Maintain MAP >70 mmHg AND adequate flow for optimal organ protection


TEST: Monitoring Parameters

TEST: Systemic Oxygen Uptake (VO₂)

- VO_2 = Cardiac Output × (CaO_2 CvO_2)
- CaO₂: Arterial oxygen content (oxygenated blood)
- CvO₂: Venous oxygen content (deoxygenated blood)
- **A-V O₂ Difference:** Reflects tissue oxygen extraction
- Low flow (1.5 L/min/m²) with hypothermia = reduced systemic VO₂

TEST & ITERATE: Clinical Optimization

Goal: Minimize organ ischemic injury while optimizing surgical field

Embolic load and red cell trauma increase with turbulent high-velocity flow

Renal protection during CPB: MAP > 70 mmHg, maintain pump flow

Inflammatory response reduced with lower flow velocities

Cerebral autoregulation maintained by adequate perfusion pressure

Empathize:

Understand surgical requirements and organ needs **Define:**

Establish pressure-flow relationships and physiology **Ideate:**

Optimize flow rates and oxygen delivery strategies

Prototype:

Configure CPB circuit for specific patient needs Test & Iterate:

Monitor and adjust parameters for organ protection

References

- https://www.ncbi.nlm.nih.gov/books/NBK482190/
- https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2024.1257631/full
- https://www.sciencedirect.com/science/article/pii/S0022522319342989
- https://www.slideshare.net/slideshow/physiology-of-cardiopulmonary-bypass/249000712
- https://academic.oup.com/ejcts/article/37/1/223/366625
- https://pmc.ncbi.nlm.nih.gov/articles/PMC5613602/

THANK YOU