

Affiliated to The Tamil Nadu Dr MGR Medical University, Chennai

DEPARTMENT OF CARDIOPULMONARY PERFUSION CARE TECHNOLOGY

COURSE NAME: Introduction to Surgery

UNIT II - Haemorrhage and wound

TOPIC: Tourniquet

FACULTY NAME: Mrs. Saranyaa Prasath

Problem: Excessive bleeding during limb surgeries impairs surgical visibility

Clinical
Need: Safe,
effective
hemostasis
without
compromising
patient safety

Complexity:

Balance between blood loss reduction and tissue damage prevention

Impact: ~27% of tourniquet placements are misapplied, leading to serious complications

DEFINE: What is a Tourniquet?

- A mechanical device that occludes arterial blood flow to a limb, creating a bloodless surgical field
- **Mechanism:** Circumferential pressure compression on extremity circumference
- **Outcome:** Temporary ischemia for enhanced surgical precision and reduced Hemorrhage
- **Scope:** Widely used in orthopaedic, vascular, plastic, and emergency surgery

IDEATE: Classification of Tourniquets

By Clinical Use

Surgical: Elective procedures

Emergency: Trauma/hemorrhage control

By Technology

Pneumatic: Compressed gas (modern)

Manual: Esmarch/rolled glove

PROTOTYPE: Pneumatic Tourniquet Components

Inflatable Cuff (Bladder):

Exerts circumferential pressure on limb

Compressed Gas Source:

Nitrogen or compressed air (regulated)

Pressure Display:

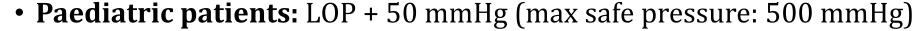
Digital or analog gauge for monitoring (mmHg)

Pressure Regulator:

Controls inflation to desired pressure levels

Connection Tubing:

Transmits pressure from source to cuff


5/11

Based on Limb Occlusion Pressure (LOP):

- LOP <130 mmHg \rightarrow Add 40 mmHg
- LOP 131-190 mmHg → Add 60 mmHg
- LOP > 190 mmHg \rightarrow Add 80 mmHg

• Standard upper limb: 250 mmHg; lower limb: 300 mmHg

Surgical Vs Emergency Tourniquets

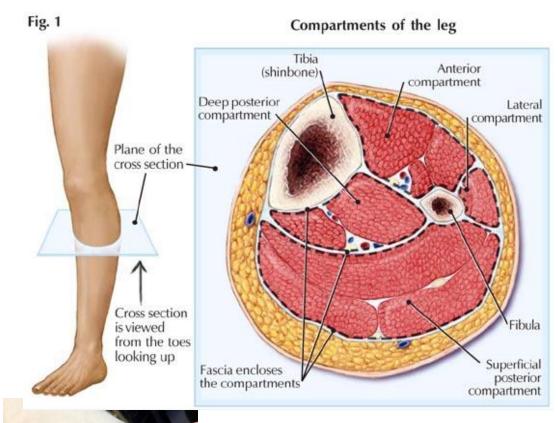
SURGICAL

- Elective orthopaedic/plastic surgery
- Pneumatic, pressurecontrolled
- **Duration**: <2-2.5 hours
- Planned, monitored application

EMERGENCY

- Trauma, hemorrhage control
- Manual or rapiddeployment
- **Duration**: Variable, <120 min safe
- Rapid, field-based application

- Optimal Duration: 60-90 minutes for lower extremity;
 <75 min for paediatric
- Maximum Safe Time: 120 minutes for healthy adults
- **Deflation Protocol:** Assess at 2 hours; if >2.5 hours anticipated, deflate 10 min at 2h, then every 1 hour
- **Post-Deflation Bleeding:** Peak fibrinolytic activity at 15 min, returns to normal by 30 min
- **Monitoring:** Timer alarm mandatory; continuous pressure gauge documentation



Complications & Prevention Strategies

Major Complications (with prevalence):

- **Nerve Palsy:** 10.7% Minimize pressure and duration
- **Pressure Ulcers:** 5.6% Adequate padding (thin, even layer)
- **Rhabdomyolysis:** 10.6% Limit duration, avoid high pressures
- **Compartment Syndrome:** 3.9% Monitor postoperatively, deflate if swelling occurs
- Thromboembolic Events: 5% Mobilize patient post-operatively, prophylaxis as needed

Summary

Tourniquet

Pre-operative:

Assess limb size, skin condition, vascular health, blood pressure

Application:

Thin, even padding; cuff overlap 3-6 inches; position over most proximal muscular area

Pressure Setting:

Use LOP-based calculation; minimum pressure for bloodless field

Monitoring:

Continuous timer + pressure gauge + documentation

Post-operative:

Document time, pressure, complications; assess neurovascular function

References

- https://pmc.ncbi.nlm.nih.gov/articles/PMC12188649/
- https://www.slideshare.net/slideshow/tourniquet/34252488
- https://pmc.ncbi.nlm.nih.gov/articles/PMC3421924/
- https://pmc.ncbi.nlm.nih.gov/articles/PMC5187604/

THANK YOU