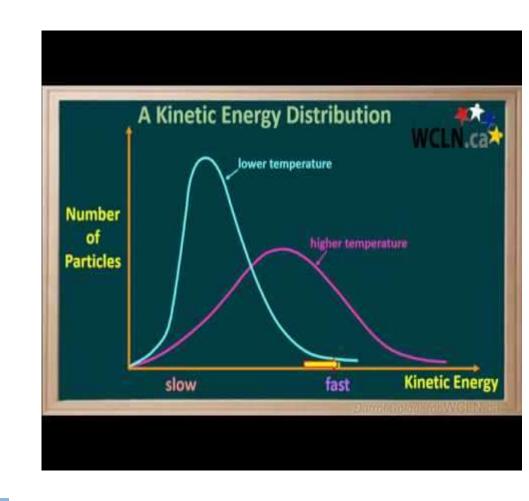
SNS COLLEGE OF ALLIED HEALTH SCIENCE

DEPARTMENT OF RADIOGRAPHY TECHNOLOGY

COURSE NAME: GENERAL PHYSICS

UNIT: 1

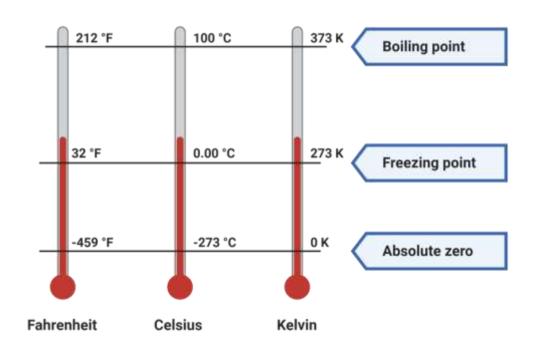

TOPIC: TEMPRETURE AND SI UNIT

FACULTY NAME: MS.M.DHANALAKSHMI

TEMPERATURE – DEFINITION

- ❖ Temperature is the measure of average kinetic energy of molecules in a substance.
- \clubsuit It determines the direction of heat flow (hot \rightarrow cold).
- Measured using thermometers (mercury, alcohol, digital).
- ❖SI unit is Kelvin (K); no degree symbol.
- ❖0 K = absolute zero = all molecular motion stops

SCALES OF TEMPERATURE


❖ Celsius (°C): Water freezes at 0°C, boils at 100°C.

❖ Kelvin (K): Absolute scale; 0 K = -273.15°C.

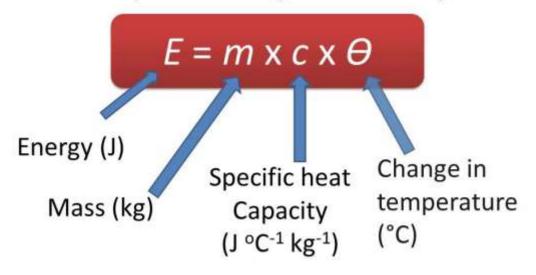
❖ Fahrenheit (°F): Water freezes at 32°F, boils at 212°F.

 \bullet Conversion: $K = {}^{\circ}C + 273.15$

 \bullet Conversion: °C = (5/9)(°F - 32)

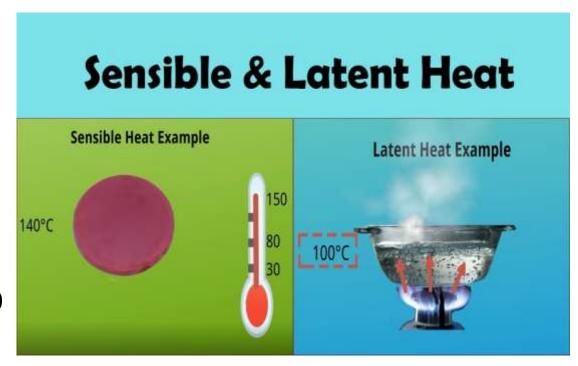
- ❖ Heat is the form of energy transferred due to temperature difference.
- ❖It flows from higher to lower temperature body.
- ❖SI unit of heat is Joule (J).
- **❖**1 calorie = **4.**186 J (old unit).
- ❖ Heat is a scalar quantity and path-dependent

Unit	Joules (J)	Calories (cal)	British Thermal Units (BTU)	Kilowatt-hours (kWh)
Joules	1	0.2390	0.000948	2.77778E-07
Calories	4.187	1	0.00397	1.16279E-06
BTUs	1055	252	1	0.000293
Kilowatt-hours	3.6E6	8.6E5	3412	1

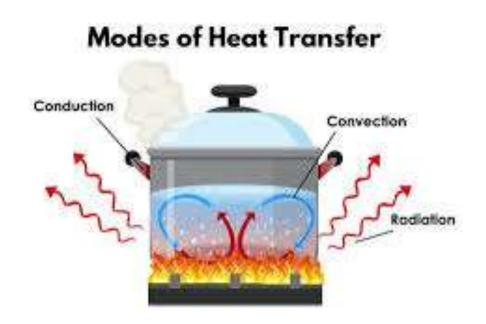

SPECIFIC HEAT CAPACITY

- ❖Specific heat (c) = heat required to raise 1 kg of substance by 1 K.
- **❖**Unit: J/kg⋅K
- ❖Water has high specific heat (4186 J/kg⋅K).
- ❖ Formula: $Q = m c \Delta T$
- ❖ Explains why water is used in cooling systems

Specific heat capacity


 This is the amount of energy needed to raise the temperature of 1kg of a material by 1°C

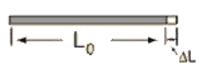
LATENT HEAT


- ❖Latent heat = heat absorbed/released during phase change at constant temperature.
- **❖** Latent heat of fusion (L_f): solid \leftrightarrow liquid.
- **❖** Latent heat of vaporization (L_v): liquid \leftrightarrow gas.
- ❖ Formula: Q = m L Water: L_f = 334 kJ/kg, L_v = 2260 kJ/kg.

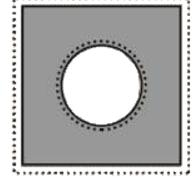
MODES OF HEAT TRANSFER

- ❖Conduction: Through direct molecular contact (solids).
- Convection: Through fluid motion (liquids/gases).
- *Radiation: Through electromagnetic waves (no medium).
- ❖ All bodies above 0 K emit thermal radiation.
- ❖ Black body = perfect absorber and emitter.

THERMAL EXPANSION

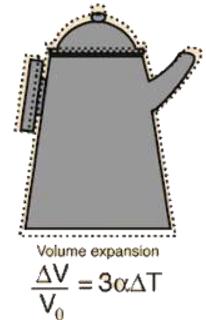


❖ Most solids expand on heating, contract on cooling.

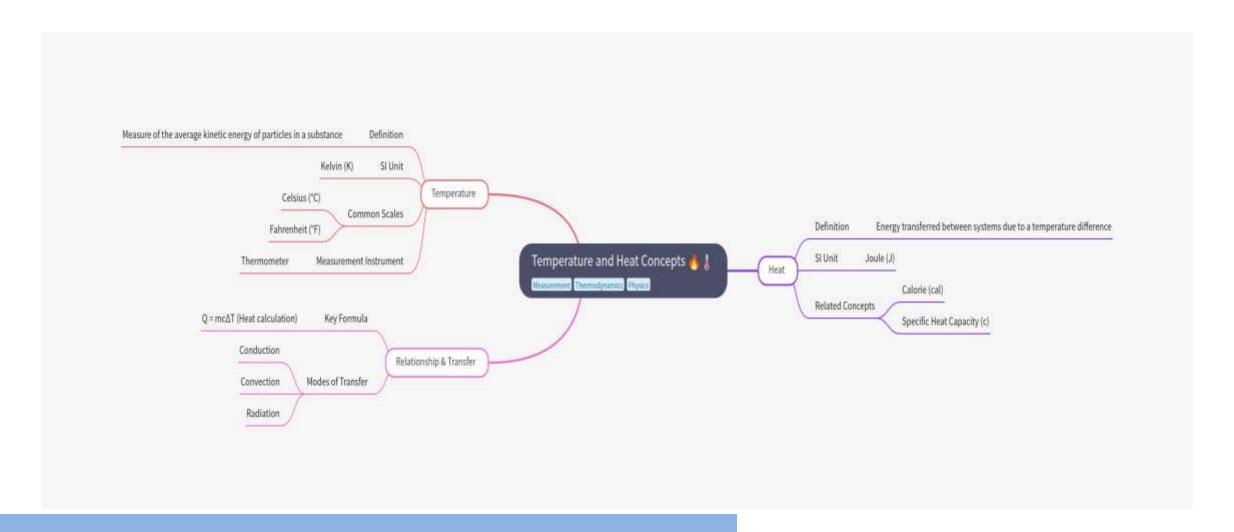

\$Linear expansion: Δ L = L₀ α Δ T

❖ Volume expansion: $\Delta V = V_0 \gamma \Delta T$

❖Bimetallic strip used in thermostats



 $\frac{\Delta L}{\Delta L} = \alpha \Delta T$


Area expansion

$$\frac{\Delta A}{A_0} = 2\alpha \Delta T$$

SUMMARY

REFERENCE

The Essential Physics of Medical Imaging

•Authors: Jerrold T. Bushberg, J. Anthony Seibert, Edwin M. Leidholdt Jr., John M. Boone

•Publisher: Lippincott Williams & Wilkins (3rd Edition, 2011)

The Physics of Radiology and Imaging

•Author: K. Thayalan

•Publisher: Jaypee Brothers Medical Publishers (2nd Edition, 2014)

Physics of Thermal Therapy: Fundamentals and Clinical Applications

•Editors: Eduardo G. Moros

•Publisher: CRC Press (2013)