SNS COLLEGE OF ALLIED HEALTH SCIENCE

Affiliated to The Tamil Nadu Dr. M.G.R Medical University, Chennai

DEPARTMENT OF RADIOGRAPHY AND IMAGING TECHNOLOGY

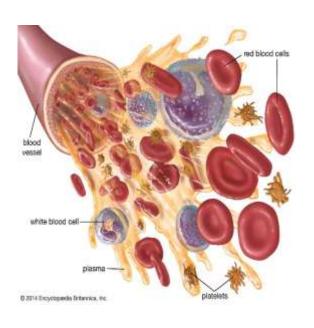
COURSE NAME: HUMAN ANATOMY AND PHYSIOLOGY

RELEVANT TO RADIOLOGY

UNIT: HEMATOLOGY

TOPIC :BLOOD GROUPING, COAGULATION AND DISORDERS RECAP

FACULTY NAME: MRS.G.HELANA JOY

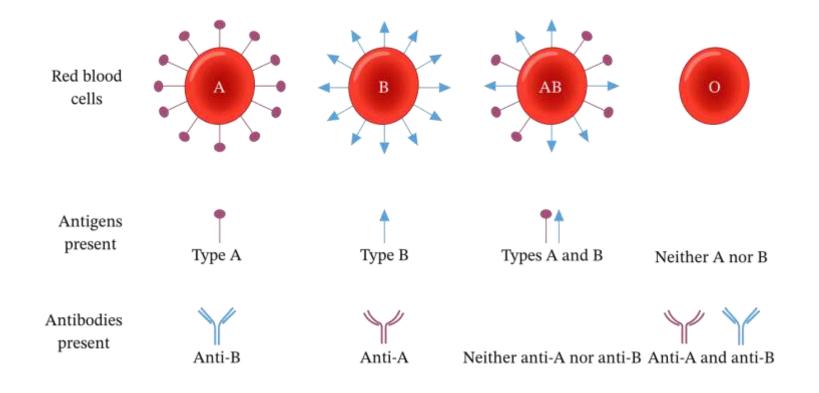

INTRODUCTION (Define)

- Hematology is the study of blood, blood-forming organs, and blood diseases.
- Blood is essential for transportation, protection, and regulation in the body.

Composition of Blood

- Blood consists of plasma (liquid) and formed elements (RBCs, WBCs, platelets).
- Functions include transporting oxygen, nutrients, and waste; immune defense; and clotting

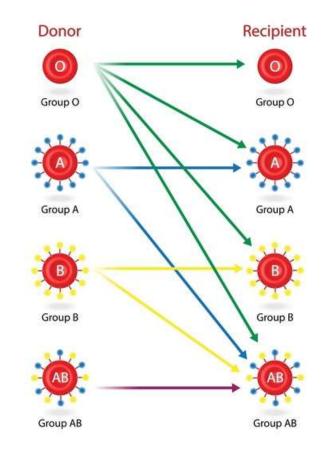
BLOOD GROUP AND ITS TYPES



- Blood groups are classifications based on specific antigens and antibodies on RBCs.
- Accurate blood typing is crucial for safe transfusions.

Types:

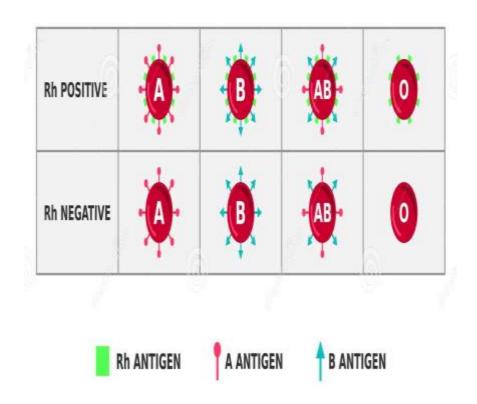
- A, B, AB, and O, depending on presence/absence of A or B antigens on RBCs.
- Antibodies in plasma are against antigens not present on RBCs.

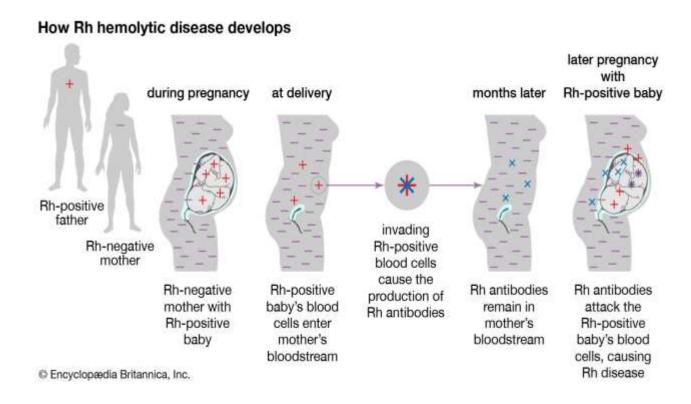


ABO BLOOD GROUP SYSTEM

- Type A: A antigens, anti-B antibodies.
- Type B: B antigens, anti-A antibodies.
- **Type AB**: A and B antigens, no antibodies (universal recipient).
- **Type O**: No antigens, anti-A and anti-B antibodies (universal donor).

RH BLOOD GROUP SYSTEM

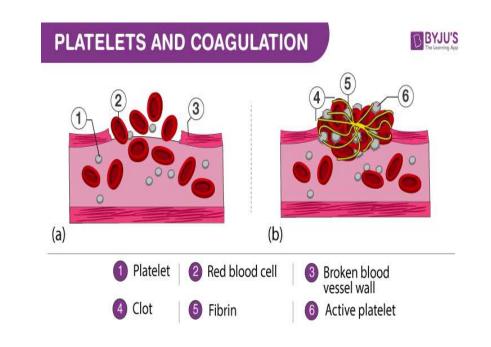



- Rh factor: Presence (Rh+) or absence (Rh-) of D antigen on RBCs.
- ~85% of people are Rh+; Rh- blood is rarer.
- Clinical relevance: Rh incompatibility in pregnancy (e.g., hemolytic disease of the

newborn).

RH BLOOD GROUP SYSTEM

BLOOD TRANSFUSIONS AND COMPATIBILITY

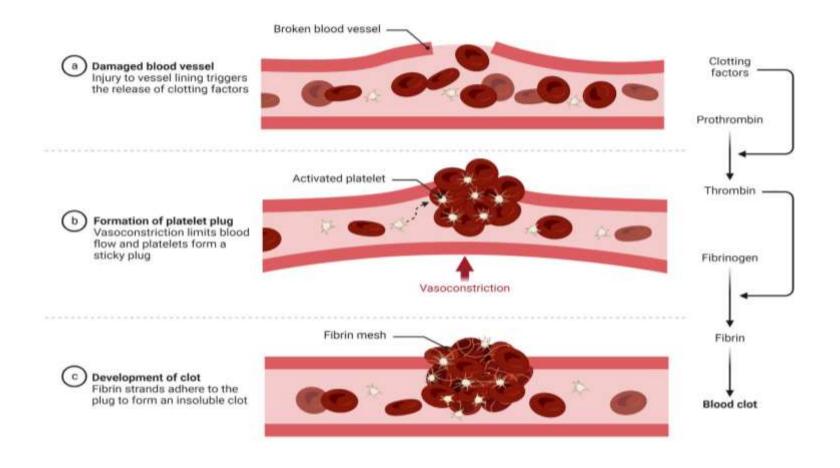

- Transfusions require matching ABO and Rh types to
 - avoid agglutination.
- Cross-matching tests ensure compatibility.
- Universal donor: O- (no antigens); universal recipient: AB+ (no antibodies).

Blood Group	Antigens	Antibodies	Can give blood (RBC) to	Can receive blood (RBC) from
АВ	A and B	None	АВ	AB, A, B, O
A	A	В	A and AB	A and O
В	В	A	B and AB	B and O
0	None	A and B	AB, A, B, O	o

HEMOSTASIS – THE COAGULATION PROCESS

- Coagulation (hemostasis): Process to stop bleeding via clot formation.
- Three phases: Vascular spasm, platelet plug formation, coagulation cascade.
- Involves platelets, clotting factors (proteins), and fibrin.

MECHANISM OF BLOOD COAGULATION



Stages of Hemostasis

- Vascular Spasm: Immediate constriction of the damaged blood vessel to reduce blood flow.
- Platelet Plug Formation (Primary Hemostasis): Platelets adhere to the exposed collagen fibers at the injury site, become activated, and aggregate to form a temporary plug.
- Blood Coagulation (Secondary Hemostasis): A complex cascade of enzymatic reactions involving clotting factors that results in the formation of a stable fibrin clot.

MECHANISM OF BLOOD COAGULATION

MECHANISM OF BLOOD COAGULATION

The Coagulation Cascade

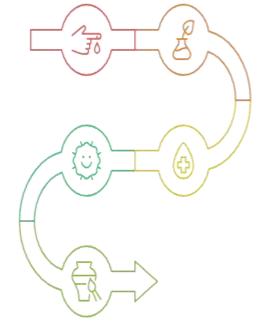
The cascade involves a series of sequential activations of proteins (clotting factors, most numbered with Roman numerals), ultimately leading to the conversion of **fibrinogen** to **fibrin**.

Pathway	Triggered by	Role	Test to Monitor
Extrinsic Pathway	Tissue Factor (Factor III) exposed after external trauma to the vessel wall.	Initiates clotting.	Prothrombin Time (PT) / INR
Intrinsic Pathway	Factors internal to the blood (e.g., Factor XII) activated by contact with exposed collagen or foreign surfaces (like glass).	Amplifies clotting.	Activated Partial Thromboplastin Time (aPTT)
Common Pathway	Begins when both pathways activate Factor X .	Leads to Thrombin and Fibrin formation.	PT and aPTT both measure it.

REGULATION OF COAGULATION

- Anticoagulants (e.g., heparin, protein C)
 prevent excessive clotting.
- Fibrinolysis: Plasmin breaks down clots after healing (via tPA).
- Balance prevents thrombosis (clots in vessels) or hemorrhage (excessive bleeding).

Blood vessel injury occurs


Initial trigger for coagulation

Natural anticoagulants regulate coagulation

Balance maintained

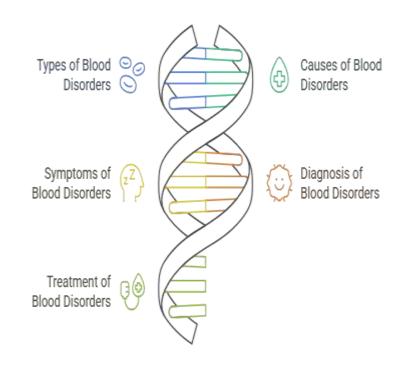
Fibrinolytic pathways dissolve clot

Healing process completed

Coagulation cascade initiated

Enzymatic reactions begin

Fibrin clot formation


Stable clot prevents blood loss

Made with 除 Napkin

DISORDERS OF BLOOD

- Blood disorders affect RBCs, WBCs, platelets, or plasma components.
- Categories: Anemias, leukemias, clotting disorders, transfusion reactions.
- Diagnosed via blood tests (e.g., CBC, coagulation panels).

ANEMIA

15/20

Reduced RBCs or hemoglobin; causes fatigue, pallor, shortness of breath.

Types:

- Iron-deficiency anemia: Low iron for hemoglobin.
- Sickle cell anemia: Abnormal hemoglobin causes sickleshaped RBCs.
- **Aplastic anemia**: Bone marrow failure reduces RBC production.

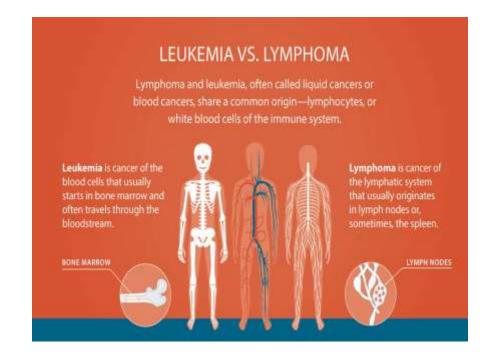
Treatment: Supplements, transfusions, bone marrow transplant.

TYPES OF ANAEMIA

Aplastic Anaemia

Sickle Cell Anaemia

LEUKEMIAS AND LYMPHOMAS

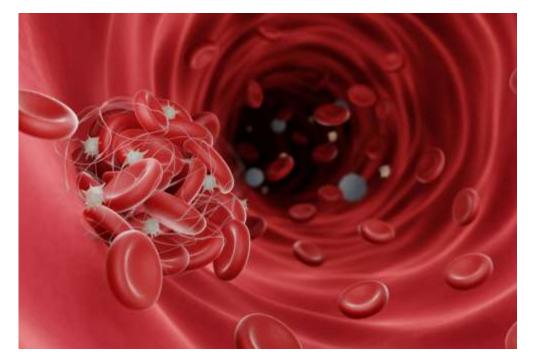


Leukemia: Cancer of WBCs; uncontrolled production in bone marrow.

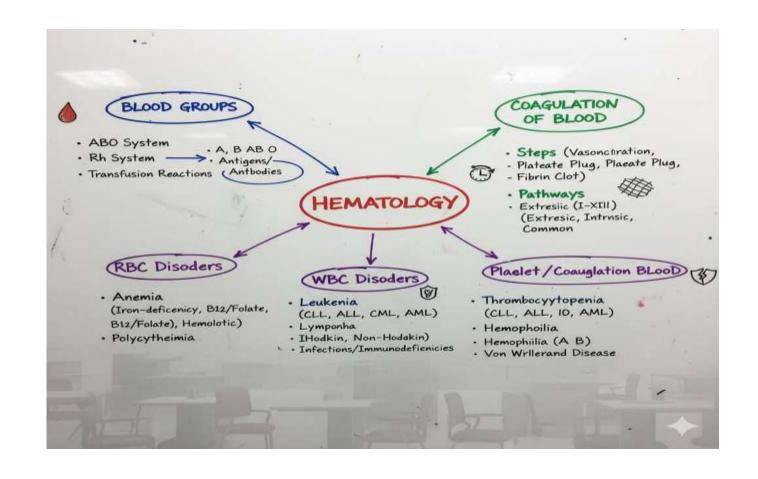
- Types: Acute (fast, immature cells), chronic (slower, mature cells).
- Symptoms: Fatigue, infections, bruising.

Lymphoma: Cancer of lymphocytes in lymph nodes (e.g., Hodgkin's, non-Hodgkin's).

• Treatment: Chemotherapy, radiation, stem cell transplant.



CLOTTING DISORDERS


- Hemophilia: Genetic lack of clotting factors (e.g., Factor VIII or IX); causes severe bleeding.
- Thrombophilia: Excessive clotting (e.g., Factor V Leiden); risks DVT, stroke.
- Thrombocytopenia: Low platelets; causes bruising, bleeding.

Treatment: Factor replacement, anticoagulants, platelet transfusions.

SUMMARY

References

• https://egyankosh.ac.in/bitstream/123456789/81724/3/Unit-2.pdf

• https://www.medicalnewstoday.com/articles/322260

https://www.ncbi.nlm.nih.gov/books/NBK2263/