SNS COLLEGE OF ALLIED HEALTH SCIENCE

Affiliated to The Tamil Nadu Dr M.G.R Medical University, Chennai

DEPARTMENT OF OPERATION THEARE AND ANAESTHESIA

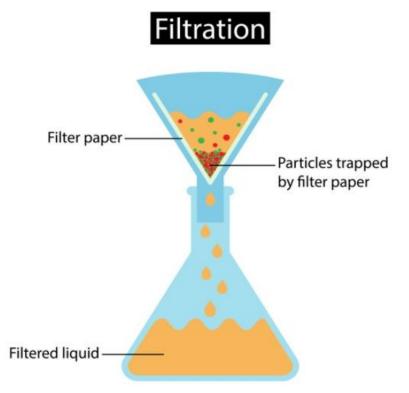
TECHNOLOGY

COURSE NAME: MICROBIOLOGY

UNIT: 1

TOPIC: STERILIZATION - PHYSICAL METHOD - FILTRATION

FACULTY NAME: MITHRA V


FILTRATION (DEFINE)

• Preferred method for sterilizing heat-sensitive liquids and gases without denaturing heat.

Applications:

- Sterilizes antibiotics, toxic chemicals, radioisotopes, vaccines, carbohydrates.
- Used for heat-sensitive injections, ophthalmic solutions,
 biological products, and air in aseptic areas.

FILTER SELECTION CRITERIA

Mechanism: Removes contaminating microorganisms rather than destroying them.

Common Filter: Nitrocellulose filter with 0.22µm pore size.

Size Ranges:

Bacteria: 0.5-5.0 µm

Viruses: 0.1–0.36 μm

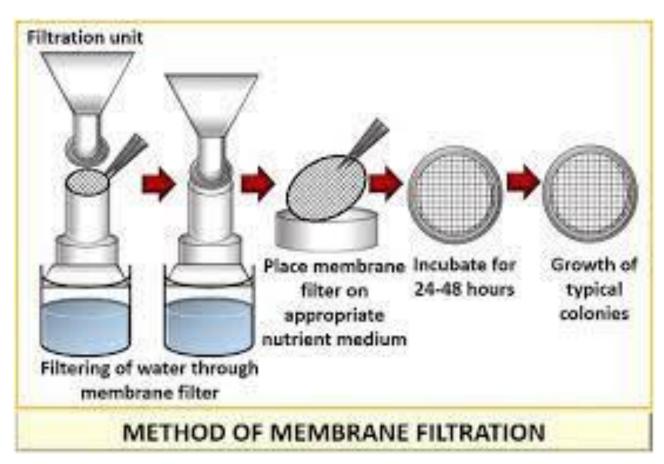
Implication: $0.22\mu m$ filters retain bacteria and spores but not all viruses.

TYPES OF FILTERS

Materials	Name of the filter
Asbestos pad	Seitz filter
Diatomaceous earth	Berkefeld filter
Procelain	Chamberland-Pasteur filter
Sintered glass disks	Sintered glass filter
Cellulose	Membrane filter
Borosilicate glass fiber	HEPA filter
Clay, mud	Candle filter

INDUSTRIAL APPLICATIONS OF FILTERS

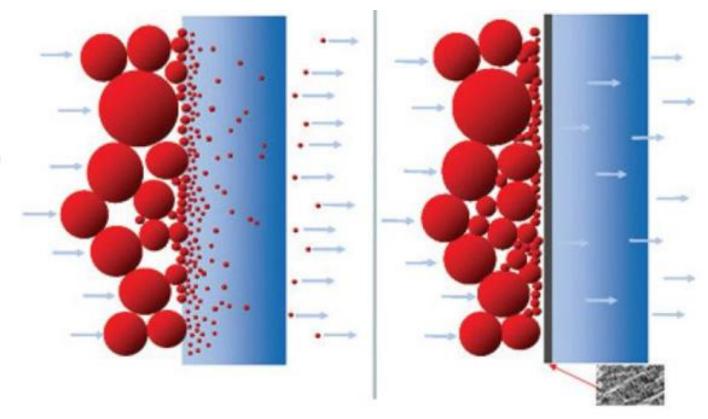
- Uses in Industry:
 - -Venting systems in:
 - Fermenters
 - Centrifuges
 - Autoclaves
 - Freeze-driers


MEMBRANE FILTERS



- -Circular membranes (~150μm thick) made of cellulose acetate, nitrate, or polysulfone.
- -Contain millions of microscopic pores (0.1–10 μ m, commonly 0.22 μ m or 0.45 μ m).
- **Formats**: Discs for syringe-mounted, or vacuum filtration devices.
- Uses:
 - -Sterilization of ophthalmic solutions, antibiotics.

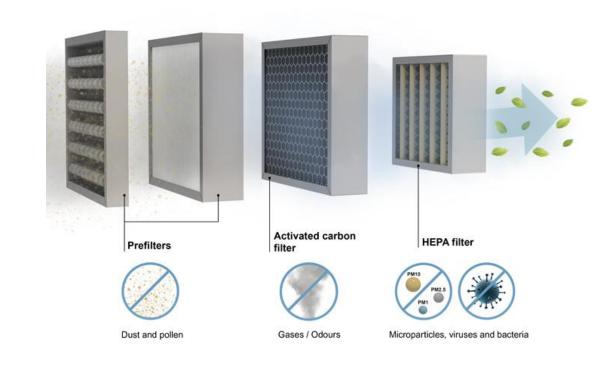
DEPTH FILTERS

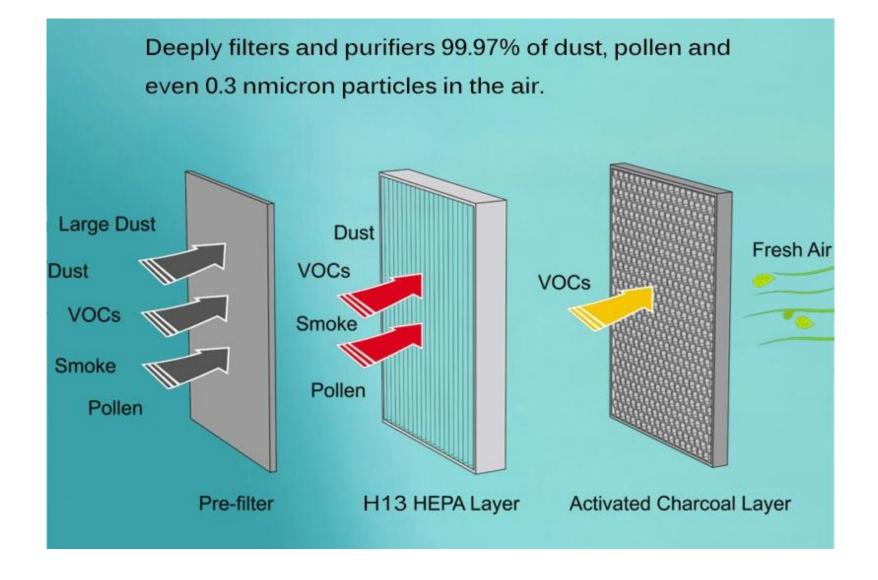

- Fibrous sheets/mats of overlapping paper or borosilicate glass fibers.
- **Mechanism**: Traps particles within fiber network
- **Examples**: Fibrous pads, sintered glass, ceramic products.
- Uses:
 - Air sterilization in industrial processes.
 - Traps dust, spores, allergens).
 - -Biological safety cabinets (HEPA filters).

DEPTH VS MEMBRANE

Depth Filtration
Particles penetrate
the structure of the
media and form a
filter cake on
the surface

Surface Filtration
Particles are collected
on the surface of the
membrane


HEPA FILTERS



- -Borosilicate glass fiber sheets with water-repellent binder
- Remove 99.97% of particles ≥0.3μm, including most microorganisms.

• Applications:

- Laminar flow biological safety cabinets.
- -Operating theaters and burn patient rooms.
- -Clean rooms and isolation units.

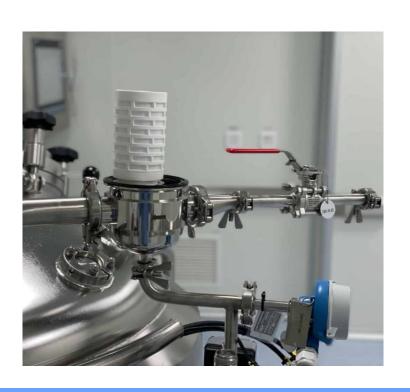
ADVANTAGES AND LIMITATIONS

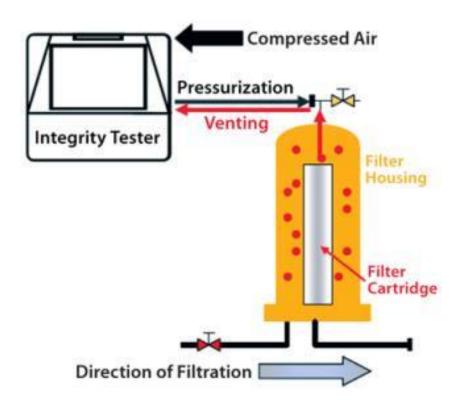
Advantages:

- Less capital-intensive than other sterilization methods.
- -Suitable for heat-sensitive liquids (infusions, vaccines, hormones).
- Filters large liquid volumes quickly.

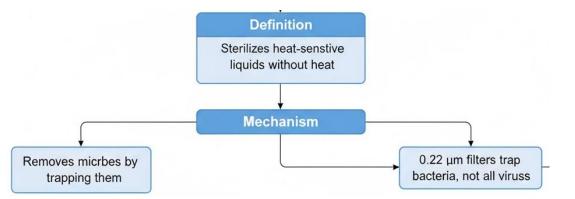
Limitations:

- -Only for liquids and gases.
- -Filters (especially nano-filters) are expensive to replace.
- Clogging may occur.


FILTER INTEGRITY TESTING


- Tests to verify filter membrane quality per regulatory requirements.
- **Purpose**: Ensure contamination-free products.
- Process:
 - -Tests membrane, disk filters, capsules/cartridges.
 - Uses filter integrity machines.
 - -Common setup: 0.45μm filter followed by 0.22μm filter.

FILTER INTEGRITY TESTING



FILTRATION - SUMMARY

Membrane Filter

Made of celluose Pore sizes: 0.22/45 µm Used for liquids: antibotics, eye drops

Types of Filters

Fibous material Traps microbes inside matrix

HEPA Filter

Efficiency: 99.97% for particles ≤0.3 µm air: Operating Theatres (OT, clean rooms

Uses

Vaccines Injections in

Pros

Fast Cheap setup fermenters/autolayes Ideal for heat-bayes for heat-labile items

Pros

Clogs Costy

Cons

Clogs Costly replacement Not for solids

Integrity Test

Ensures filter quality (e.g., $0.45 \rightarrow 22 \, \mu m \, setup$

REFERENCES

- Block, S. S. (Ed.). (2001). *Disinfection, Sterilization, and Preservation* (5th ed.). Lippincott Williams & Wilkins.
- Wickert, R. W., & Brusewitz, G. H. (2018). "Membrane filtration for microbial removal in pharmaceutical manufacturing." *PDA Journal of Pharmaceutical Science and Technology*, 72(4), 345–358. https://doi.org/10.5731/pdajpst.2018.008789
- U.S. Food and Drug Administration (FDA). (2004). *Guidance for Industry: Sterile Drug Products Produced by Aseptic Processing Current Good Manufacturing Practice*.

THANK YOU