SNS COLLEGE OF ALLIED HEALTH SCIENCE

Affiliated to The Tamil Nadu Dr MGR Medical University, Chennai DEPARTMENT OF RADIOGRAPHY AND IMAGING

TECHNOLOGY

COURSE NAME: MODERN IMAGING TECHNIQUES AND

RECENT TRENDS IN IMAGING

UNIT: MAMMOGRAPHY

TOPIC: MAMMO TOMOGRAM & SONOMAMMOGRAPHY

PROCEDURES - RECAP

FACULTY NAME: MRS.G.HELANA JOY

- ➤ Mammotomography: 3D mammography for detailed breast tissue imaging
- > Sonomammography: Ultrasound-based imaging for breast evaluation

MAMMOTOMOGRAPHY (DIGITAL BREAST TOMOSYNTHESIS) - PROCEDURE

Definition: Advanced 3D mammography capturing multiple

low-dose X-ray images

Procedure:

- Breast compressed between plates
- X-ray tube moves in an arc, taking images from multiple angles
- Images reconstructed into 3D slices for detailed view
- Duration: ~10-15 minutes

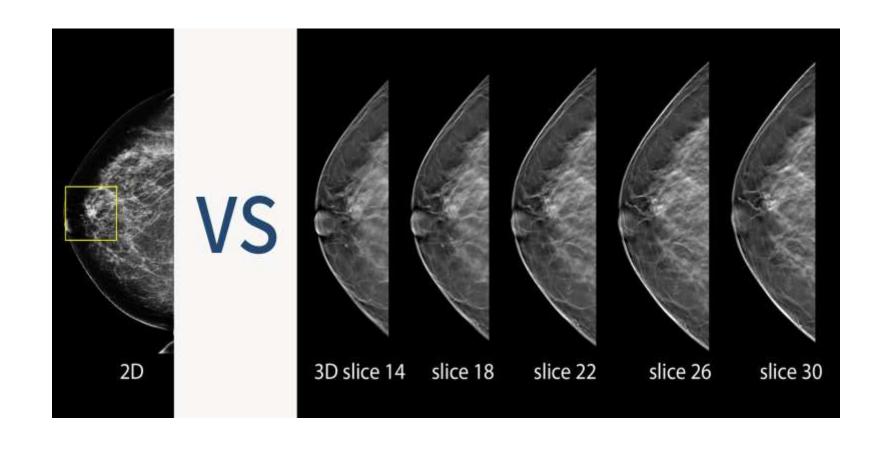
Uses: Screening and diagnostic imaging for breast abnormalities

MAMMOTOMOGRAPHY - ADVANTAGES

Enhanced Detection:

• Improves cancer detection rates by ~20-30% compared to 2D mammography (Source: Studies like JAMA, 2014)

Better visualization in dense breasts


Reduced Overlap: Minimizes tissue overlap, improving clarity

Fewer Callbacks: Decreases false positives and need for additional imaging

Detailed Imaging: 1-mm slices allow precise lesion localization

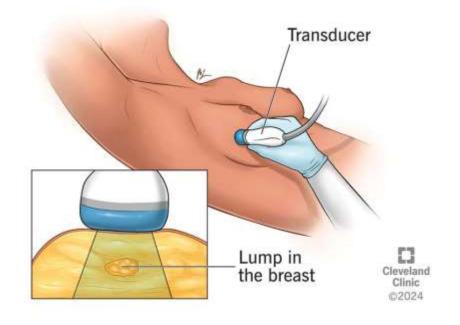
MAMMOTOMOGRAPHY - ADVANTAGES

MAMMOTOMOGRAPHY - LIMITATIONS

- Radiation Exposure: Low-dose radiation, though higher than 2D mammography
- Cost: More expensive than traditional mammography
- Availability: Not all facilities offer DBT due to equipment costs
- Interpretation Time: Longer reading time for radiologists due to multiple slices
- False Negatives: May miss some lesions, especially in very dense breasts

SONOMAMMOGRAPHY (BREAST ULTRASOUND) - PROCEDURE

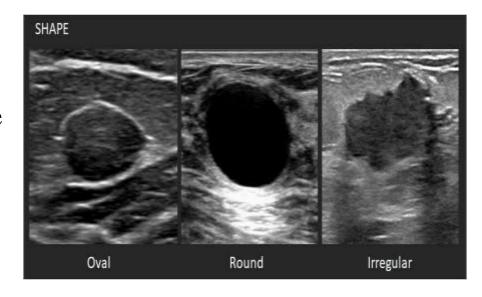
Definition: Non-invasive imaging using high-frequency sound


waves

Procedure:

- Patient lies on a table
- Gel applied to breast; handheld probe moved over skin
- Sound waves reflect off tissues, creating images
- Duration: ~15-30 minutes

Uses: Evaluate breast lumps, guide biopsies, supplement mammography


Breast ultrasound

- No Radiation: Safe for pregnant women and younger patients
- Dense Breasts: Effective in evaluating dense breast tissue
- Real-Time Imaging: Allows dynamic assessment and biopsy guidance
- Cost-Effective: Generally less expensive than DBT
- Accessibility: Widely available in most medical facilities

Ultrasound image of breast cyst vs. solid mass

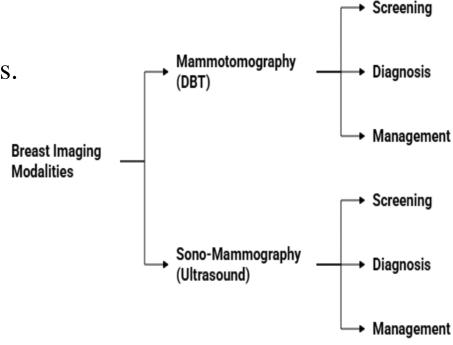
SONOMAMMOGRAPHY - LIMITATIONS

- Operator Dependency: Image quality relies on technician skill
- Limited Scope: Not a primary screening tool; supplements mammography
- False Positives: May misinterpret benign lesions as suspicious
- Poor Microcalcification Detection: Less effective for detecting calcifications compared to DBT
- Time-Consuming: Detailed exams can take longer

COMPARISON TABLE

Aspect	Mammotomography (DBT)	Sonomammography
Imaging Type	X-ray (3D)	Ultrasound (Sound waves)
Primary Use	Screening & diagnostics	Diagnostics, biopsy guidance
Radiation	Low-dose radiation	None
Dense Breasts	Good performance	Excellent performance
Cost	Higher	Lower
Availability	Limited in some regions	Widely available
Limitations	Radiation, cost, reading time	Operator-dependent, misses microcalcifications

CLINICAL APPLICATIONS



Mammotomography:

- Preferred for routine screening in women over 40
- Detects microcalcifications and architectural distortions.

Sonomammography:

- Ideal for evaluating palpable lumps, cysts vs. solid masses
- Used in younger women or as follow-up to mammography.

PATIENT CONSIDERATIONS

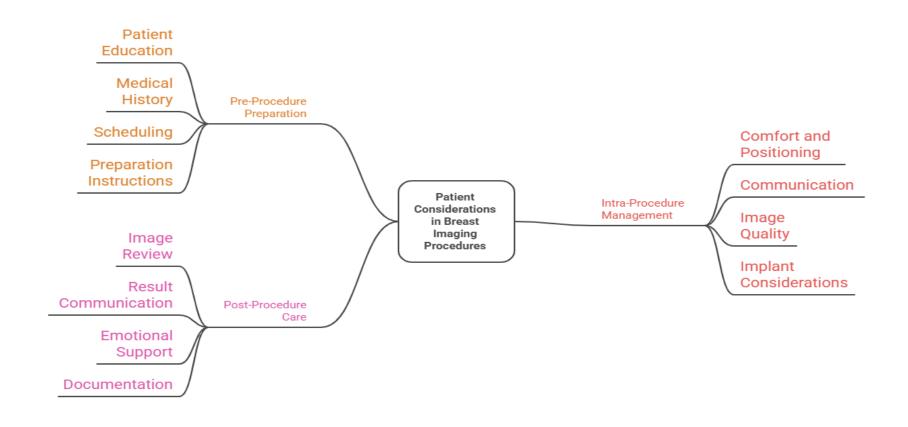
Comfort:

• DBT: Breast compression can be uncomfortable

• Ultrasound: Non-invasive, generally comfortable

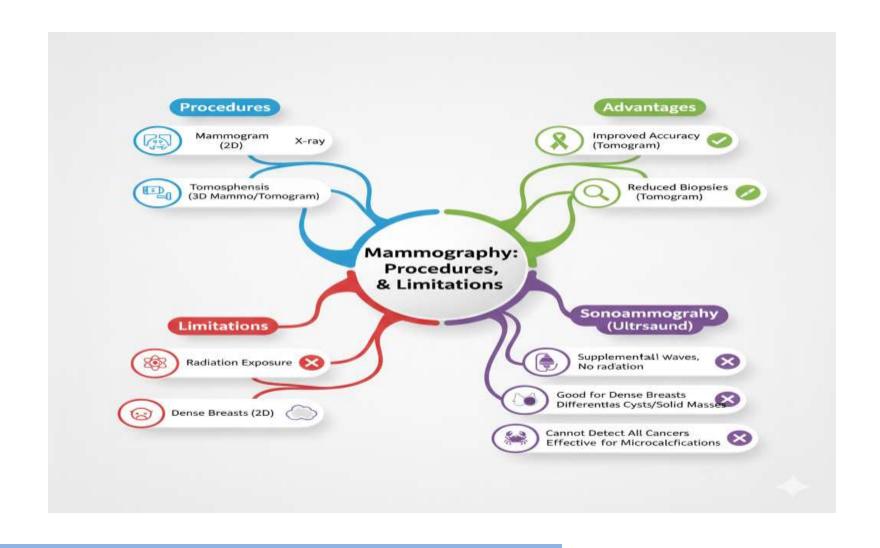
Safety:

• DBT: Minimal radiation risk


• Ultrasound: No radiation, safe for all ages

Accessibility: Ultrasound more available in resource-limited settings

Patient Education: Explain benefits vs. risks for informed decisions



SUMMARY

References:

- Mammography Quality Standards Act (MQSA) Regulations.
- Bushberg, J. T., et al. (2020). The Essential Physics of Medical Imaging.
- https://my.clevelandclinic.org/health/diagnostics/15939-digital-breast-tomosynthesis-and-breast-cancer-screening
- https://www.apollohospitals.com/diagnostics-investigations/sonomammography