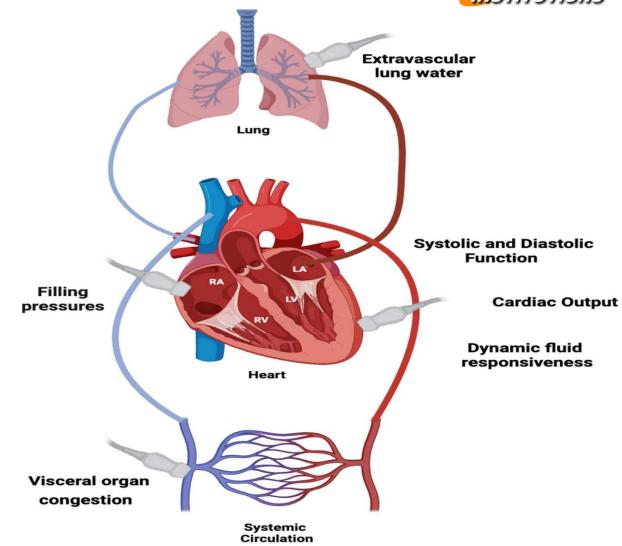
SNS COLLEGE OF ALLIED HEALTH SCIENCE

DEPARTMENT OF CARDIAC TECHNOLOGY

COURSE NAME : Applied Physiology

UNIT: Overview of Cardiovascular system

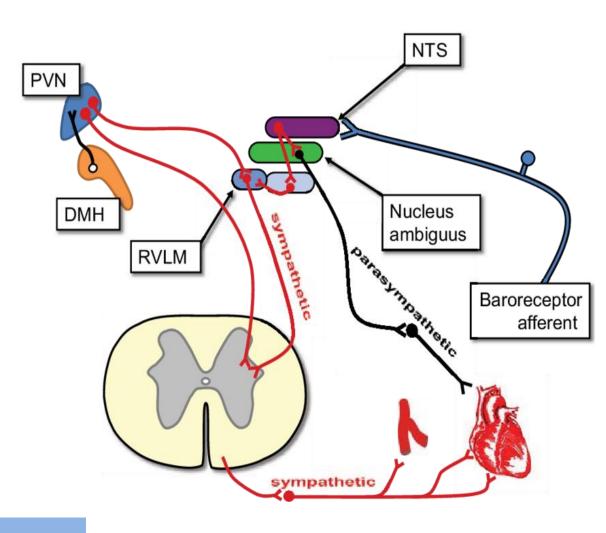
TOPIC: Central Control of the Cardiovascular System


FACULTY NAME: Kavipriya S

EMPATHIZE - Understanding the Clinical and Learning Need

The cardiovascular system must maintain:

- 1. Constant blood pressure
- 2. Adequate tissue perfusion
- 3. Stable cardiac output

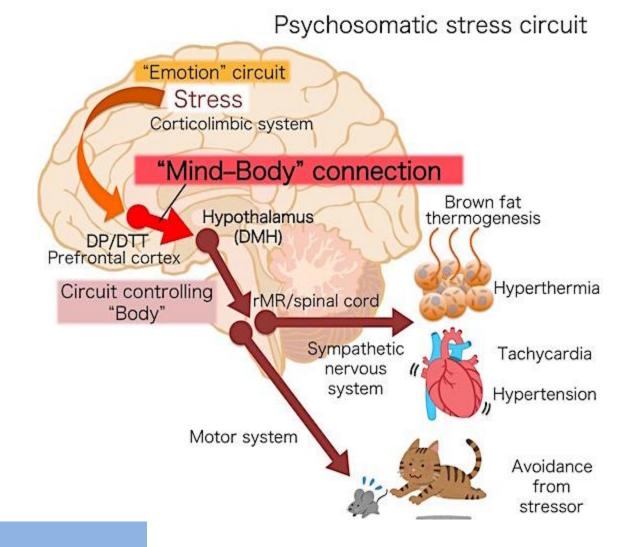

2. DEFINE — Central Control Centers

A. Central Control Centres

1.Medullary Centres (in Brainstem):

- 1. Located in **medulla oblongata**.
- 2. Major components:
 - 1. Cardioinhibitory Centre (CIC):
 - → Activates **parasympathetic (vagus) nerves** → decreases HR.
 - 2. Cardioacceleratory Center (CAC):
 - → Activates **sympathetic nerves** → increases HR and contractility.
 - 3. Vasomotor Center (VMC):
 - → Controls vasoconstriction and vasodilation of blood vessels.
- 3. Together, they maintain **mean arterial pressure (MAP)** and **cardiac output**.

2. DEFINE — Identifying the Core Concept



Hypothalamus:

- Integrates emotional and temperature-related influences.
- -Stress \rightarrow ↑ sympathetic tone.
- Heat \rightarrow vasodilation (skin blood flow ↑).
- Cold \rightarrow vasoconstriction (heat conservation).

Higher Brain Centers (Cerebral Cortex & Limbic System):

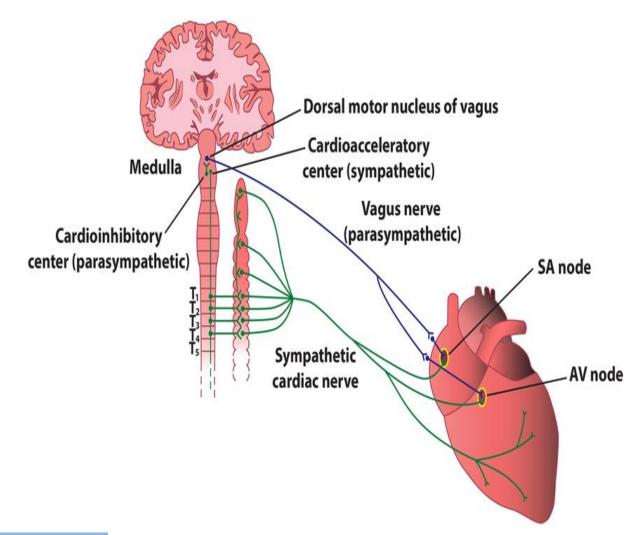
- Emotional states like fear, anger, anxiety affect HR and BP.
- Example: "Fight or flight" \rightarrow tachycardia, \uparrow BP.

Peripheral Input Pathways

Reflex	Receptor Location	Stimulus Detected	Effect
Baroreceptor Reflex	Carotid sinus & Aortic arch	Change in arterial pressure	\$\dagger\$BP → \$\dagger\$HR & vasoconstriction; \$\dagger\$BP → \$\dagger\$HR & vasodilation
Chemoreceptor Reflex	Carotid & aortic bodies	↓O ₂ , ↑CO ₂ , ↓pH	Stimulates 1HR & vasoconstriction
Bainbridge Reflex	Right atrium	†Venous return	†HR to pump excess blood
Bezold-Jarisch Reflex	Ventricles	Chemical/ischemic stimulation	Reflex bradycardia & vasodilation

3. IDEATE — Mechanisms and Functional Integration

Goal: Maintain **blood pressure**, **heart rate**, and **tissue perfusion** dynamically.


Sympathetic Control

Origin: Thoracolumbar spinal cord.

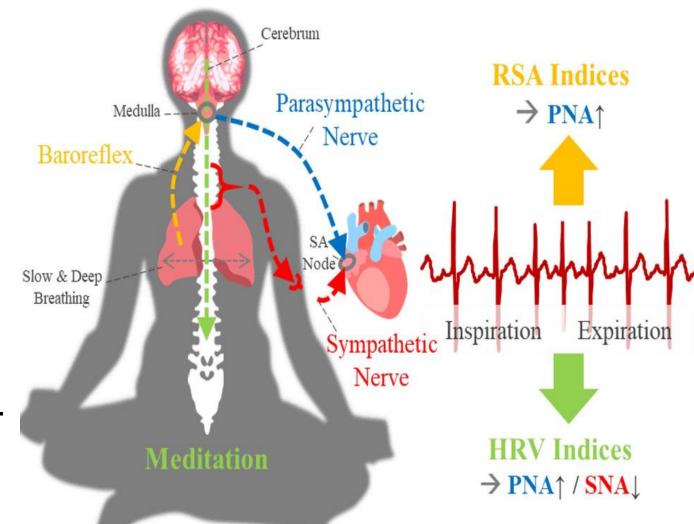
Neurotransmitter: Norepinephrine (NE).

Effects:

- ➤ ↑ Heart rate (chronotropy).
- ➤ ↑ Contractility (inotropy).
- Vasoconstriction in most organs.
- Vasodilation in skeletal muscle during exercise.

Parasympathetic Control

Origin: Vagus nerve (cranial nerve X).


Neurotransmitter: Acetylcholine (ACh).

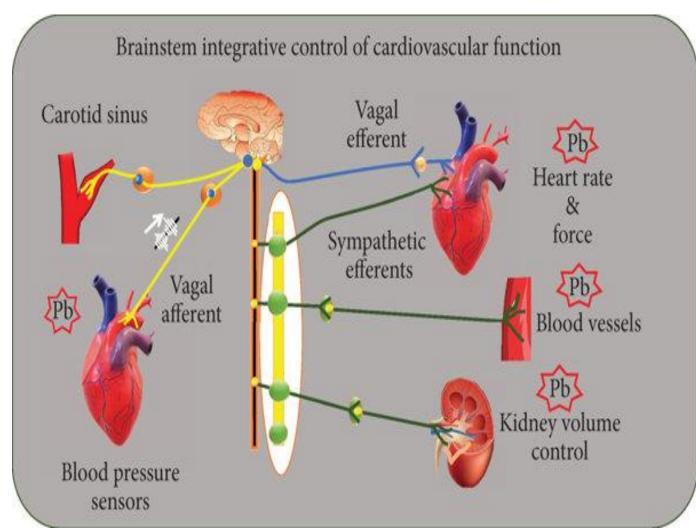
Effects:

↓ Heart rate.

Mild \downarrow contractility (mainly in atria).

Little effect on systemic vascular tone.

5. TEST — Evaluate, Monitor, and Reflect


Assessment of Central Control Function

Measure:

- Resting HR and BP.
- HR response to posture or deep breathing.
- > Reflex testing (Valsalva manoeuvre).

Abnormal findings:

- **Autonomic failure:** HR and BP don't change with posture.
- **Baroreflex impairment:** Fluctuating BP without compensation.

SUMMARY TABLE

Control Center / Reflex	Function	Neural Pathway	Clinical Relevance
Medullary VMC	Maintains BP	Sympathetic + Parasympathetic	Shock, Hypertension
Hypothalamus	Temperature, emotion regulation	Autonomic	Stress response
Baroreceptor Reflex	BP stabilization	Glossopharyngeal & Vagus nerves	Orthostatic hypotension
Chemoreceptor Reflex	Respiration-BP link	Carotid/Aortic bodies → Medulla	Hypoxia, acidosis
Higher Centers	Emotional influence	Limbic system → Hypothalamus	Anxiety-induced tachycardia

Reference Books & Journals

Textbooks:

- ➤ Cardiovascular Physiology Pappano & Wier (Mosby Physiology Series)
- ➤ Guyton & Hall Textbook of Medical Physiology Elsevier
- Cardiovascular Physiology Concepts Richard E. Klabunde
- *≻Human Physiology* Lauralee Sherwood

Journals:

- Circulation American Heart Association
- ➤ Journal of Applied Physiology
- ➤ Autonomic Neuroscience: Basic and Clinical
- ➤ Nature Reviews Cardiology