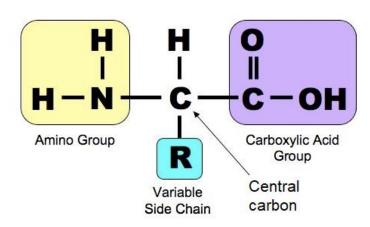
SNS COLLEGE OF ALLIED HEALTH SCIENCE

DEPARTMENT OF PHYSICIAN ASSISTANT

COURSE NAME: BIOCHEMISTRY

UNIT: 1

TOPIC: PROTEIN - CLASSIFICATION

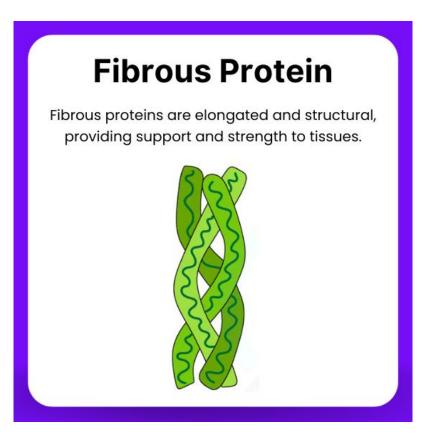

FACULTY NAME: MITHRA V

PROTEINS (DEFINE)

- •Complex, large macromolecules essential for life
- Polymers made up of smaller units called amino acids
- •Bond Type: Amino acids linked via peptide bonds
- Bond Formation Mechanism:
- •Carboxyl group (-COOH) of one amino acid
- •Reacts with amino group (-NH₂) of another
- Role in Body:
- Metabolism regulation
- Cell signaling & communication
- •Structural support & movement

PEPTIDE VS POLYPEPTIDE

• Dipeptide:


- -2 amino acids joined by 1 peptide bond
- Tripeptide:
 - -3 amino acids joined by 2 peptide bonds
- Polypeptide:
 - -Chain of >10 amino acids linked by multiple peptide bonds
- Peptide Bond Characteristics:
 - -Covalent bond
 - -Planar, rigid, partial double bond character

Classification - Based on Shape

• Fibrous Proteins (Scleroproteins):

- -Structure: Long, elongated, thread-like, coiled
- -Solubility: Insoluble in water & dilute salts
- -Function: Provide structural support, strength, protection
- **–Location**: Connective tissues, skin, hair, muscles
- Examples:
 - -Collagen: Abundant protein in animals (tendons, ligaments, skin)
 - -**Keratin**: Hair, nails, horns, feathers
 - –Actin & Myosin: Muscle contraction

Classification - Based on Shape

Globular Proteins:

-Structure: Compact, folded into spherical or oval shape, coiled into 3D

-Solubility: Soluble in water & aqueous solutions

– Function: Dynamic roles – transport, catalysis, regulation

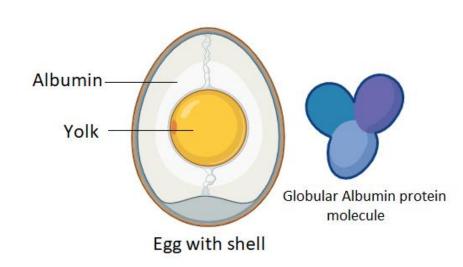
–Location: Blood, cytoplasm, hormones

• Examples:

-Albumin: Maintains osmotic pressure in blood

-Insulin: Regulates blood glucose

-**Hemoglobin**: Oxygen transport


Globular Protein Globular proteins are spherical and function in transport, enzymes, and regulation

Classification - Based on Constitution

• Simple Proteins:

- -Composition: Contain only amino acids (no non-protein part)
- -Solubility-based Subgroups:
 - **Albumins**: Soluble in water, coagulated by heat (e.g., egg white)
 - **Globulins**: Soluble in salt, insoluble in water (e.g., immunoglobulins)
 - **Prolamins**: Soluble in 70–80% alcohol (e.g., gliadin in wheat)
 - **Glutelins**: Soluble in dilute acid/alkali (e.g., glutenin in wheat)
 - Histones: Basic, DNA-binding (in nucleus)
 - Protamine: Small, basic, sperm cells

Classification - Based on Constitution

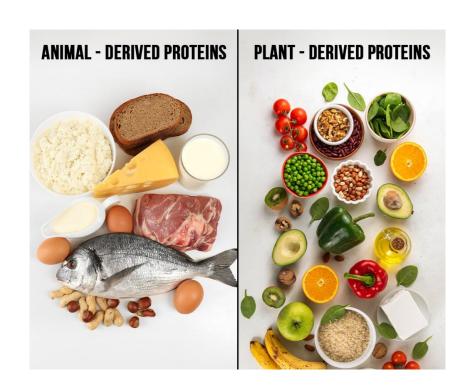
•Conjugated Proteins:

•Composition: Protein + Non-protein prosthetic group

•Function: Transport, protection, catalysis, storage

Туре	Prosthetic Group	Example
Nucleoproteins	Nucleic acid (DNA/RNA)	Ribosomes, Chromatin
Glycoproteins	Carbohydrates (<4%)	Immunoglobulins, Mucins
Mucoproteins	Carbohydrates (>4%)	Mucin (saliva, gastric mucus)
Lipoproteins	Lipids	LDL, HDL, Chylomicrons
Chromoproteins	Colored pigment	Hemoglobin (heme), Rhodopsin
Metalloproteins	Metal ions	Ferritin (Fe), Ceruloplasmin (Cu)
Phosphoproteins	Phosphate group	Casein (milk), Pepsin

Classification - Based on Constitution



Derived Proteins:

- -Origin: Not naturally occurring; formed by partial or complete breakdown of native proteins
- -**Proteoses**: Soluble in water, not coagulated by heat.
- -**Peptones**: Smaller, diffuse through membranes
- —Peptides: Short chains (di-, tri-, polypeptides)

• Clinical Relevance:

- Detected in urine during **proteinuria**
- -Used in **protein hydrolysates** for nutrition

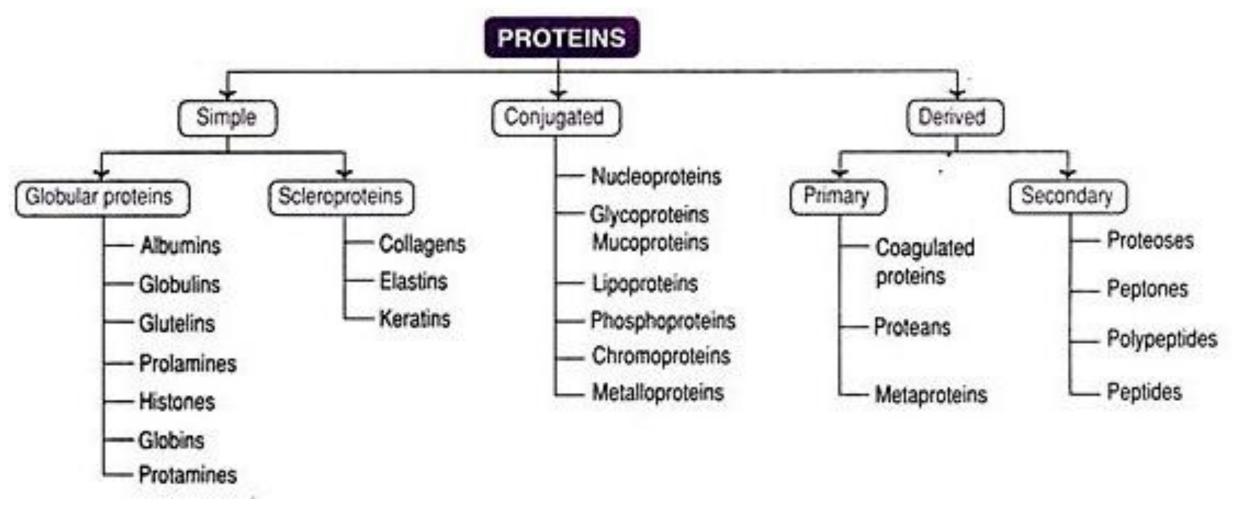
Classification – Based on Nature of Molecules

Acidic Proteins:

- -Negatively charged at physiological pH (exist as anions)
- -High content of **acidic amino acids** (Aspartic acid, Glutamic acid)
- **–Examples**: Blood group antigens and Casein (milk)

Basic Proteins:

- Positively charged at physiological pH (exist as cations)
- -Rich in **basic amino acids** (Lysine, Arginine, Histidine)
- -Examples: Histones (DNA packaging in nucleus), Ribosomal **proteins** and **Protamine** (sperm)


Acidic vs Basic Amino Acids

(acidic amino acid)

(basic amino acid)

SUMMARY

REFERENCES

- Lehninger Principles of Biochemistry David L. Nelson, Michael M. Cox
- Harper's Illustrated Biochemistry Victor W. Rodwell, David A. Bender, et al.
- Textbook of Medical Biochemistry M.N. Chatterjea, Rana Shinde
- NCBI Bookshelf Biochemistry: Proteins ⇔ https://www.ncbi.nlm.nih.gov/books/NBK557845/
- Protein Data Bank (PDB) RCSB PDB ⇔ https://www.rcsb.org
- **Journal**: Journal of Biological Chemistry (JBC) ASBMB ⇔ https://www.jbc.org

THANK YOU