SNS COLLEGE OF ALLIED HEALTH SCIENCE

DEPARTMENT OF CARDIAC TECHNOLOGY

COURSE NAME : Basic Electrocardiography

UNIT: Basic Principles of Electrocardiography

TOPIC: Fundamental principles of electrocardiography Cardiac

electrical field generation

FACULTY NAME: Kavipriya S

Case Study Title - Understanding Cardiac Activation through ECG Principles

Case Overview

Patient: 52-year-old male

Symptoms: Intermittent chest discomfort, mild palpitations, and shortness of

breath during exertion

Clinical Findings: Normal heart sounds, but irregular pulse rhythm noted

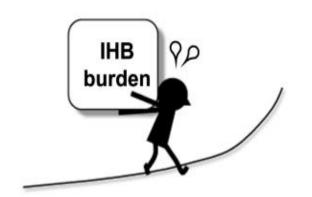
Suspected Problem: Atrial conduction abnormality or premature atrial complexes

Diagnostic Tool Chosen: Electrocardiography (ECG)

EMPATHIZE - Understanding the Clinical and Physiological Need

Objective:

Recognize how electrical activation of the heart produces measurable surface potentials and why understanding this is vital for diagnosis.

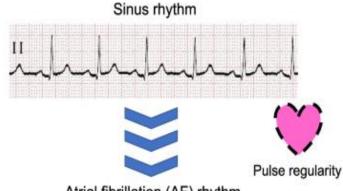


Empathize

STIP STIPLING

Clinical Observation:

- ➤ The patient's palpitations and irregular pulse require understanding of **how atrial and ventricular depolarization** patterns appear on ECG.
- ➤ Thus, understanding the **fundamental principles of cardiac electrical field generation** is essential
 for interpreting the observed rhythm
 disturbances.



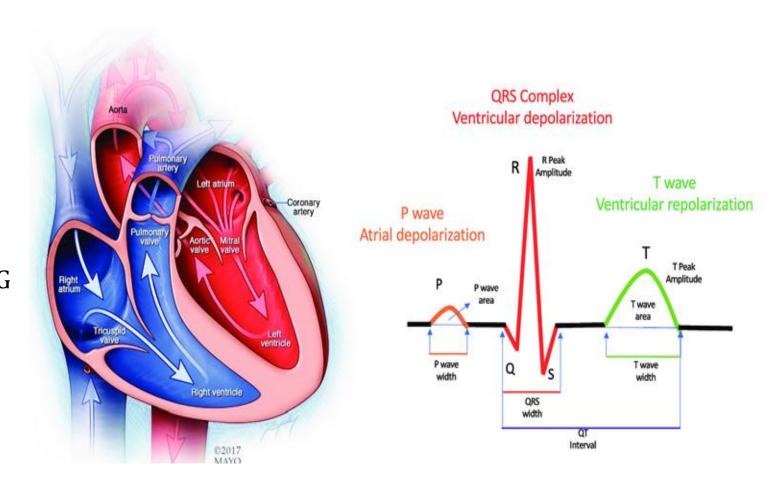
Pulse irregularity burden

"Atrial fibrillation"

Possible risk indicator?

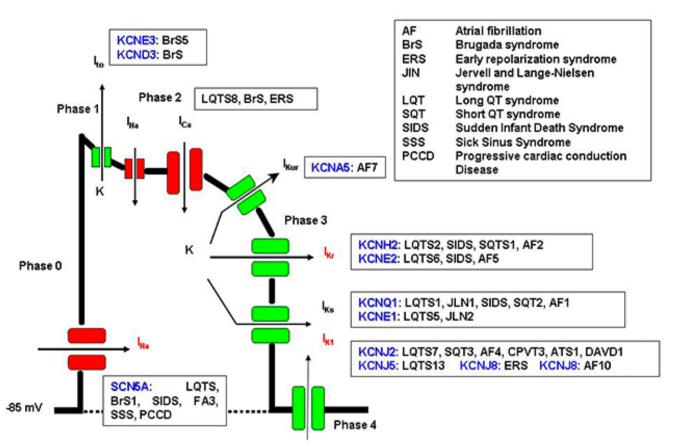
Heart failure

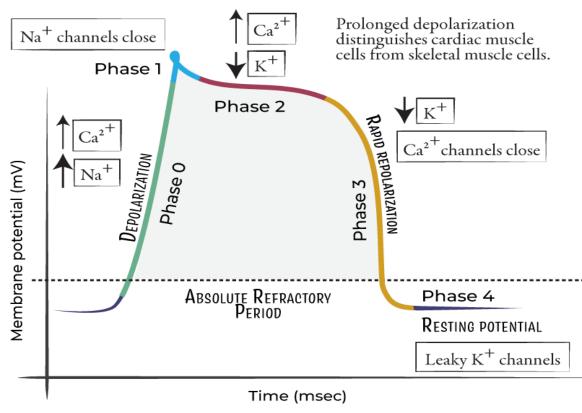
Stroke



DEFINE - Establishing the Diagnostic and Conceptual Challenge

Problem Statement:


How might we visualize and interpret the cardiac electrical field and wavefront propagation on the body surface using ECG to understand rhythm abnormalities?


Define-Cardiac Action potential

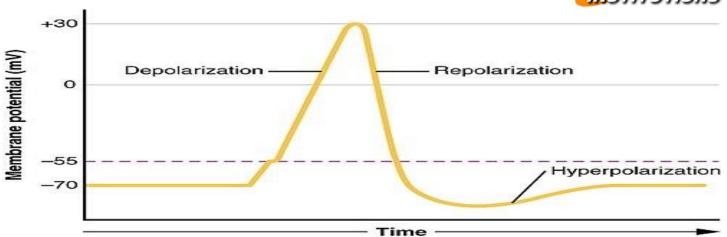
Cardiac channelopathies

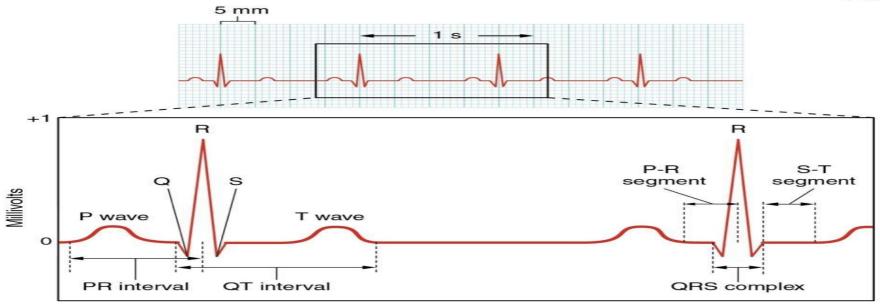
Cardiac Action Potential

Ideate (Generate Diagnostic and Assessment Approaches)

Concept	Description	Clinical Relevance
Resting Membrane Potential	-90 mV; maintained by ion pumps	Basis of excitability
Depolarization	Influx of Na ⁺ causing electrical activation	Creates ECG deflection
Repolarization	Efflux of K ⁺ restoring potential	Corresponds to T-wave
Dipole Formation	Electrical potential difference during depolarization	Source of ECG signal
Cardiac Vector	Direction and magnitude of electrical force	Determines waveform polarity

PROTOTYPE - Application to a Clinical Case




Step 1: Visualize the Cardiac Electrical Field

At rest: Cells are polarized — no current flow → baseline (isoelectric line).

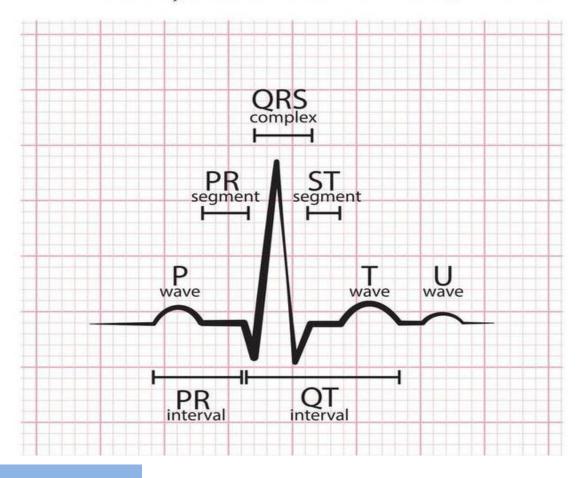
Depolarization:

- Begins in the SA node → atrial myocardium
 → AV node → bundle branches → Purkinje
 fibers → ventricular myocardium.
- Each phase generates an electrical vector.

Step 2: Cardiac Wavefronts and ECG Representation

Activation Sequence	Wavefront Direction	ECG Representation
SA node → Atria	Toward lead II	Positive P wave
AV node delay	No movement	Isoelectric line
Ventricular depolarization (Septal → Apex → Base)	Toward left ventricle	QRS complex
Ventricular repolarization	Opposite to depolarization	T wave (positive in most leads)

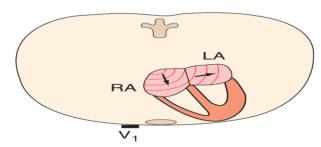
Step 3: Patient ECG Analysis


ECG Findings:

- Irregular P waves before QRS complexes
- Normal QRS morphology
- Normal T waves
- Normal u waves

Interpretation:

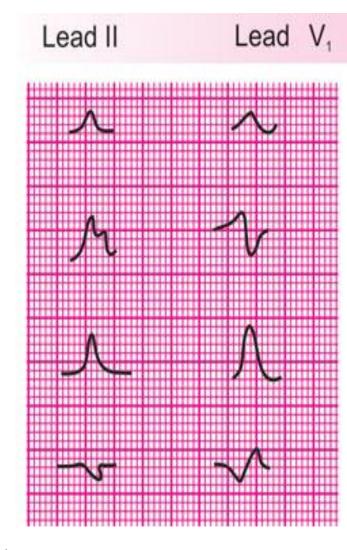
- Atrial premature complexes causing early depolarization wavefronts.
- Cardiac vector changes reflect abnormal atrial activation direction.


NORMAL ECG

Step 4: Relate to Electrical Field Generation

STITUTIONS:

- ➤ Abnormal atrial depolarization shifts dipole axis → altered field on body surface → different P-wave shape.
- Demonstrates how cardiac electrical field direction determines ECG morphology.


	Normal	Right	Left
11	RA LA	RA LA	RA LA
V ₁	RA LA	RA	RA

Normal P wave

P mitrate (left atrial hypertrophy)

P pulmonale (right atrial hypertrophy)

Retrograde P wave

TEST - Evaluation

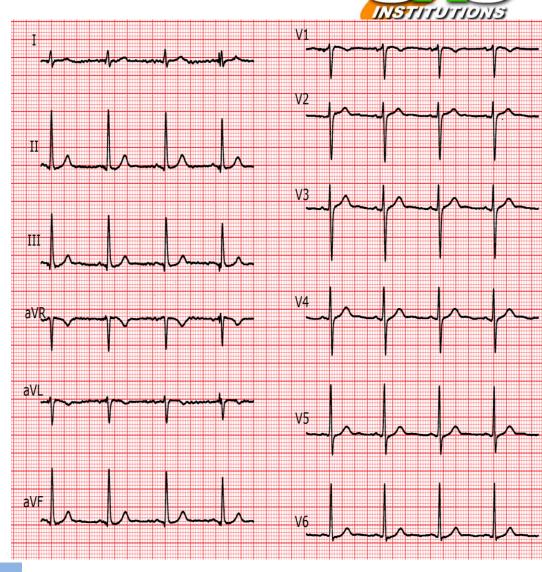
Outcome Evaluation:

- The ECG correctly reflects wavefront direction and timing differences.
- Confirms atrial premature beats with compensatory pause.

Cardiac Electrical Activity and ECG Representation

SA node Positive P wave activation Isoelectric line QRS complex Positive T wave Upward deflection Flat line indicating Complex of waves Upward deflection Initiates atrial depolarization on ECG no electrical activity on ECG on ECG

Atrial depolarization


Wavefront moves toward lead II AV node delay

Brief pause before ventricular activity Ventricular depolarization

Wavefront moves toward left ventricle

Ventricular repolarization

Wavefront moves opposite to depolarization

Case Reflection through Design Thinking

Stage	Learning Focus	Application	
Empathiz e	Understand the patient's symptoms and physiology	Why ECG is needed	
Define	Frame the diagnostic and physiological problem	How electrical activation maps to ECG	
Ideate	Identify key concepts of wavefronts, dipoles, and fields	Concept mapping and visualization	
Prototype	Apply theory to ECG tracing	Case-based analysis	
Test	Evaluate ECG interpretation and learning outcome	Reflect and refine	

References

- Guyton & Hall. Textbook of Medical Physiology, 15th Edition. Elsevier, 2021.
- Goldberger AL. *Clinical Electrocardiography: A Simplified Approach*, 9th Edition. Elsevier, 2023.
- Marieb & Hoehn. Human Anatomy & Physiology, 12th Edition. Pearson, 2021.
- Surawicz B, Knilans TK. *Chou's Electrocardiography in Clinical Practice*, 7th Edition, Elsevier, 2019.
- Bayés de Luna A. Clinical Electrocardiography: A Textbook, Wiley-Blackwell, 2020.