SNS COLLEGE OF ALLIED HEALTH SCIENCE

Affiliated to The Tamil Nadu Dr MGR Medical University, Chennai

DEPARTMENT OF CARDIAC TECHNOLOGY

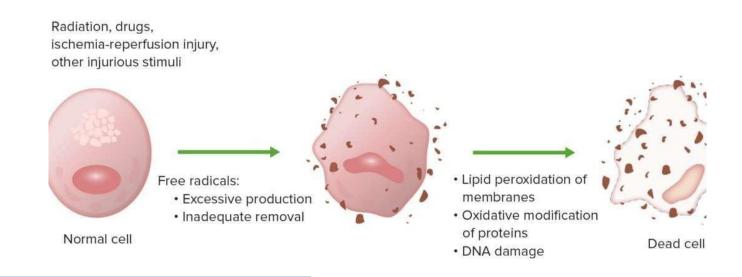
COURSE NAME: PATHOLOGY RELATED TO CARDIAC

TECHNOLOGY

UNIT:1

TOPIC: CELL INJURY - IRREVERSIBLE

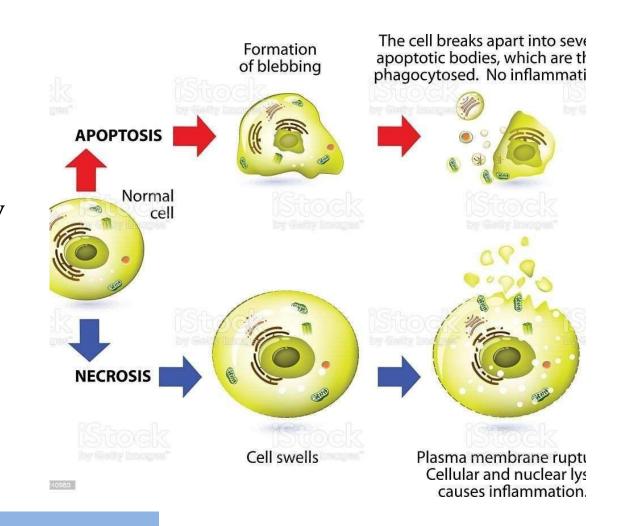
FACULTY NAME: Ms. HARSHITHA S


Definition

Cell injury occurs when cells are exposed to stress or harmful stimuli that exceed their ability to adapt. It can be:

Reversible: Cell recovers once the stimulus is removed.

Irreversible: Cell undergoes death—either by necrosis or apoptosis.


Irreversible Cell Injury

Definition:

Irreversible cell injury refers to **permanent cellular damage** where the cell **cannot recover**, even if the injurious stimulus is removed. It ultimately results in **cell death**, by either:

- Necrosis uncontrolled cell death due to external injury
- Apoptosis programmed, controlled cell death

Necrosis

Definition:

Necrosis is a **pathologic**, unregulated form of cell death resulting from **acute injury**, causing **cell swelling**, **membrane rupture**, **and inflammation**.

Mechanism (Pathogenesis):

Cell injury → ATP depletion → ion pump failure → **cell swelling**Increased intracellular calcium → **activation of enzymes** (proteases, lipases, DNases)
Membrane damage → leakage of cellular contents
Inflammatory response is triggered

Morphological Changes:

Cytoplasmic:

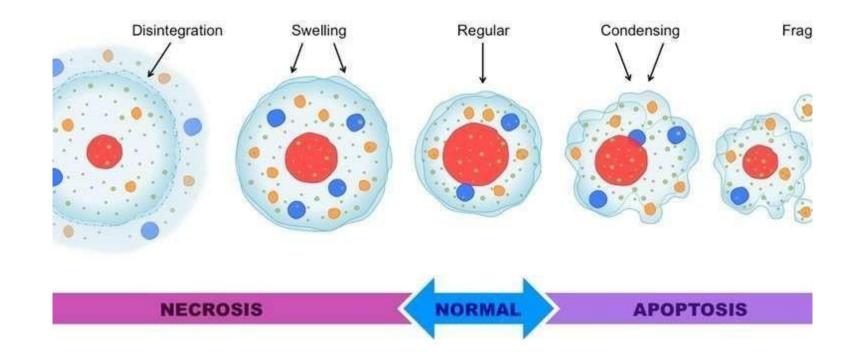
Increased eosinophilia (pinkness) due to protein denaturation Loss of organelles

Nuclear:

Pyknosis: Nuclear shrinkage

Karyorrhexis: Fragmentation of nucleus

Karyolysis: Dissolution of nucleus



Туре	Features	Example
Coagulative	Preserved tissue architecture, firm texture	Myocardial infarction
Liquefactive	Complete digestion of cells into liquid	Brain infarction, abscess
Caseous	Cheese-like, combination of coagulative and liquefactive	Tuberculosis
Fat necrosis	Chalky white fat saponification	Acute pancreatitis
Fibrinoid	Immune complex deposition in vessels	Vasculitis
Gangrenous	Death of tissue in extremities	Diabetic foot, ischemia

Cell injury/Pathology/SNSCAHS/Ms.Harshitha.S

Apoptosis

Apoptosis

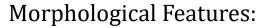
Definition:

Apoptosis is a **programmed, energy-dependent** process of **cell death** that occurs without inflammation. It plays a role in both **physiologic and pathologic conditions**.

Mechanism (Pathways):

1. Intrinsic (Mitochondrial) Pathway:

Triggered by DNA damage, oxidative stress


Regulated by Bcl-2 family proteins

Mitochondrial membrane permeabilization → Cytochrome c release → Caspase activation

2. Extrinsic (Death Receptor) Pathway:

Activation of **Fas** or **TNF receptors**Caspase-8 activation → caspase cascade

CELL INJURY / PATHOLOGY RELATED TO CARDIAC TECHNOLOGY/ Ms, HARSHITHA S

Cell shrinkage, intact plasma membrane
Chromatin condensation at nuclear periphery
Formation of apoptotic bodies
Phagocytosis by macrophages without inflammation

Embryogenesis
Hormone-dependent tissue regression (e.g., endometrial shedding)
Elimination of self-reactive lymphocytes

Pathologic Apoptosis Examples:

DNA damage (e.g., radiation)
Viral infections (e.g., HIV, Hepatitis)
Atrophy after duct obstruction

Necrosis

Apoptosis

Energy-dependent? No Yes

Membrane integrity Lost Maintained

Inflammation Present Absent

Cell size Swelling Shrinkage

DNA fragmentation Random Ordered

Outcome Tissue damage Cell removal without damage

REFERENCE

INSTITUTIONS .

Harshmohan book of pathology

https://share.google/1czL1JEVSM9fwyEtE