SNS COLLEGE OF ALLIED HEALTH SCIENCE

Affiliated to The Tamil Nadu Dr MGR Medical University, Chennai

DEPARTMENT OF OPERATION THEATRE AND ANESTHESIA TECHNOLOGY – II Year

COURSE NAME: PRINCIPLES OF ANESTHESIA - 1

UNIT 1 - ANAESTHESIA MACHINE & MEDICAL GAS SUPPLY

TOPIC: Anesthesia Machine

FACULTY NAME: Ms. Shanmuga Priya

ANESTHESIA MACHINE

- An anesthesia machine is a medical device used to generate and mix a fresh gas flow of medical gases (e.g., O_2 , N_2O) and inhalational anesthetic agents for inducing and maintaining anesthesia.
- It integrates with ventilators, breathing systems, suction equipment, and monitoring devices for comprehensive patient care.
- Invented by Edmund Gaskin Boyle in 1917, known as Boyle's anesthesia machine.
- Shifted from portable setups to stationary units due to bulky cylinder storage and complex systems.

- High Pressure System
- Intermediate Pressure System
- Low Pressure System
- Breathing System
- Ventilator
- Scavenging System
- Monitoring Devices

- **Gas Cylinders**: Store high-pressure gases (e.g., O_2 at 2200 psig, N_2O at 745 psig); color-coded for safety.
- **Yoke Assembly**: Secures cylinders with pin-index safety system to prevent wrong connections.
- Check Valves: Prevent backflow of gases.
- Pressure Gauges: Indicate cylinder pressure levels.
- **Pressure Regulators**: Reduce pressure to 45-50 psig for downstream use.

S INSTITUTIONS

Intermediate Pressure System

- **Pipeline Inlets**: Connect to central gas supply (50 psig) with filters and check valves.
- Master Switch: Controls gas flow activation.
- Oxygen Pressure Failure Devices: Alarms and stops other gases if O₂ pressure drops.
- **Second Stage Regulators**: Fine-tune pressure to intermediate levels.
- **Flush Valve**: Delivers 50 L/min O₂ in emergencies.

- Flow Control Valves: Adjust gas flow rates.
- **Flowmeters (Rotameters)**: Measure and display gas flow (e.g., 0-15 L/min).
- Hypoxia Prevention Safety Devices: Ensure minimum $25\% O_2$ in mixture.
- Unidirectional Check Valves: Prevent reverse gas flow.
- **Vaporizers**: Deliver precise anesthetic vapors (e.g., sevoflurane), temperature-compensated.
- Common Gas Outlet: Connects to breathing circuit.

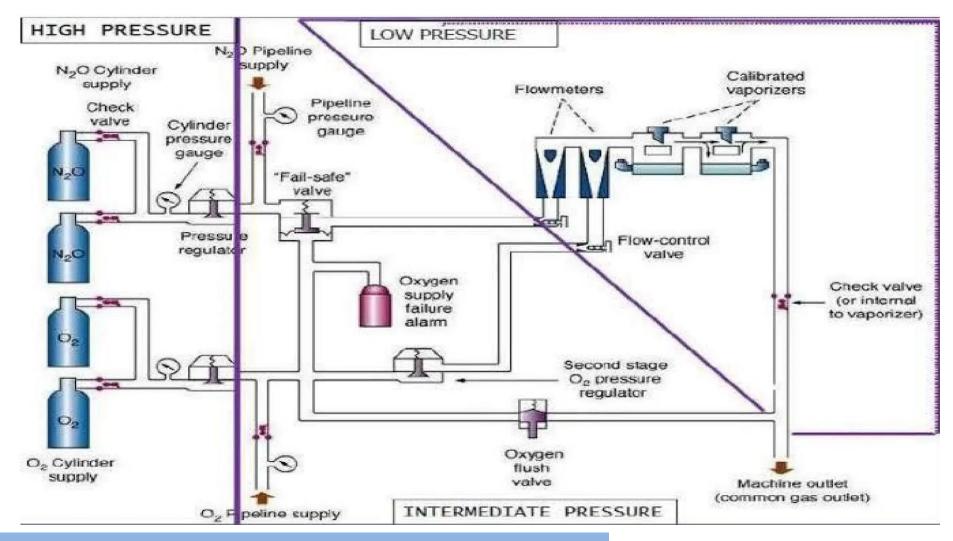
- **Absorber Assembly**: Removes CO₂ using soda lime.
- Unidirectional Valves: Ensure one-way gas flow to patient.
- Adjustable Pressure Limiting Valve: Releases excess pressure.
- Reservoir Bag: Allows manual ventilation and pressure monitoring.
- **Hoses**: Connect components to patient circuit.
- Y Piece: Splits gas flow to inspiratory and expiratory limbs.

Ventilator

- Bellows Assembly: Drives gas into patient lungs.
- **Controls**: Adjust tidal volume, respiratory rate, and pressure.
- Alarms: Alert for high pressure or disconnection.

Scavenging System

- Collection System: Captures excess anesthetic gases.
- Transfer Tubing: Transports gases to disposal.
- Gas Disposal Tubing: Connects to exhaust system.
- Gas Disposal Assembly: Safely vents gases outside.



- Oxygen Analyzer: Measures O₂ concentration.
- Pressure Gauges: Monitor circuit pressure.
- Volume Monitors: Track delivered tidal volume.
- **Respiratory Rate Monitors**: Display breathing frequency.
- Capnograph: Measures CO₂ levels.
- Pulse Oximeter: Assesses oxygen saturation.

Anesthesia Machine

In-Class Assessment

- **Case-Based Question (10 points)**: In the scenario, identify the faulty system and recommend two precautions. Justify with functions.
- Short Answer (5 points): List three parts each from high and low-pressure systems.
- Group Discussion (5 points): Ideate one solution for intermediate-pressure safety. Present its benefit.
- **Multiple Choice (5 points)**: What reduces cylinder pressure in high system? a) Flowmeter b) Regulator c) Vaporizer d) Pipeline
- Reflection (5 points): Write a brief paragraph on how DT improves anesthesia machine setup.
- **Total**: 30 points *Submit written answers and discuss group activity in class.*

Summary

- Anesthesia machine is essential for safe anesthesia delivery.
- Understand the three pressure systems and their parts: High (cylinders, regulators),
 Intermediate (pipelines, alarms), Low (flowmeters, vaporizers).
- Regular checks and maintenance are crucial for reliability.
- Safety features prevent mishaps during use.

References

- **Book**: Dorsch JA, Dorsch SE. (2020). *Understanding Anesthesia Equipment*. 6th ed. Wolters Kluwer.
- **Website**: American Society of Anesthesiologists. Anesthesia Machine Checkout Recommendations. https://www.asahq.org/standards-and-practice-parameters/statements/anesthesia-machine-checkout-recommendations (Accessed October 21, 2025).
- Journal: Subrahmanyam M, Mohan S. (2013). Safety Features in Anaesthesia Machine.
 Indian Journal of Anaesthesia, 57(5), 472–480.
 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821260/ (Accessed October 21, 2025).

THANK YOU