SNS COLLEGE OF ALLIED HEALTH SCIENCE

DEPARTMENT OF PHYSICIAN ASSISTANT

COURSE NAME: BIOCHEMISTRY

UNIT: 1

TOPIC: CARBOHYDRATES AND ITS CLASSIFICATION

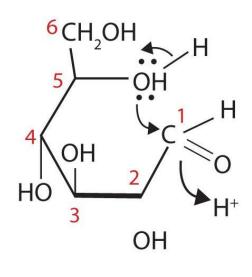
FACULTY NAME: MITHRA V

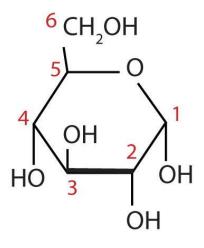
CARBOHYDRATES (DEFINE)

- Sugar molecules, one of three main nutrients (with proteins, fats).
- Broken down into glucose (blood sugar), main energy source for cells, tissues, organs.
- Common sources: Grains, fruits, dairy, legumes, snacks, sweets, starchy vegetables.

TYPES OF CARBOHYDRATES

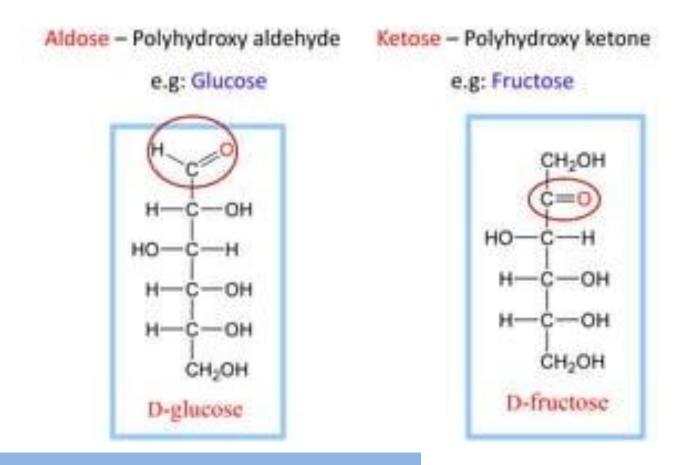
- Sugars: Simple carbs, found in candy, fruits, vegetables, milk.
- Starches: Complex carbs, broken into sugars for energy (e.g., bread, pasta, potatoes).
- **Fiber**: Complex carb, aids digestion, lowers cholesterol/sugar (e.g., legumes, whole grains).


X SIMPLE CARBS COMPLEX CARBS


STRUCTURE OF CARBOHYDRATES

- Empirical formula: (CH₂O)n (e.g., Glucose: C₆H₁₂O₆).
- Structural forms:
 - Open chain: Straight-chain form.
 - -Hemi-acetal: Six-membered glucopyranose ring.
 - -Haworth: Pyranose ring (5 carbon, 1 oxygen).

$$\begin{array}{c|c}
H & 1 & 0 \\
\hline
2 & \\
H & C & OH \\
\hline
6 & CH_2OH
\end{array}$$



- (a) Fischer projection
- (b) Three-dimensional representantion
- (c) Cyclic monosaccharide

CARBOHYDRATE - CLASSIFICATION

• **Monosaccharides**: Building blocks, aldose (aldehyde) or ketose (ketone) Eg., Glucose and Fructose

• Disaccharides: Yield 2 monosaccharides on hydrolysis.

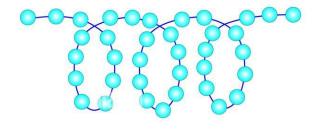
Eg., Sucrose (Glucose + Fructose), Lactose (Glucose + Galactose), Maltose.

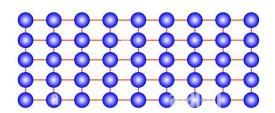
• Oligosaccharides: Yield 2-10 monosaccharides,

Eg., Raffinose (trisaccharide).

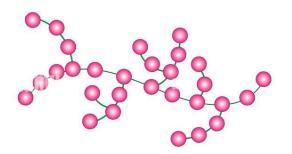
- **Polysaccharides**: >10 monosaccharide units, Eg., Starch, Cellulose.
 - -Homopolysaccharides: Same monomer (Eg., Starch, Glycogen).
 - -Heteropolysaccharides: Different monomers (Eg., Hyaluronic acid).

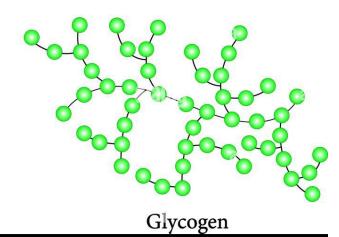
HOMOPOLYSACCHARIDES


- Homoglycans,,
- Composed of single type of monomer, containing monosaccharides of same repeating unit
- Single type of monosaccharide is involved in the formation
- Have simple structures
- Examples are starch, glycogen, cellulose, pectin.


HETEROPOLYSACCHARIDES

- Heteroglycans.,
- Composed of different repeating units of two or more different monosaccharides
- Contains more than 10 different repeating units.
- Different types of monosaccharides are involved in the formation
- Have complex structures
- Examples are Hyaluronic acid, Chondroitin.


POLYSACCHARIDES



Amylose

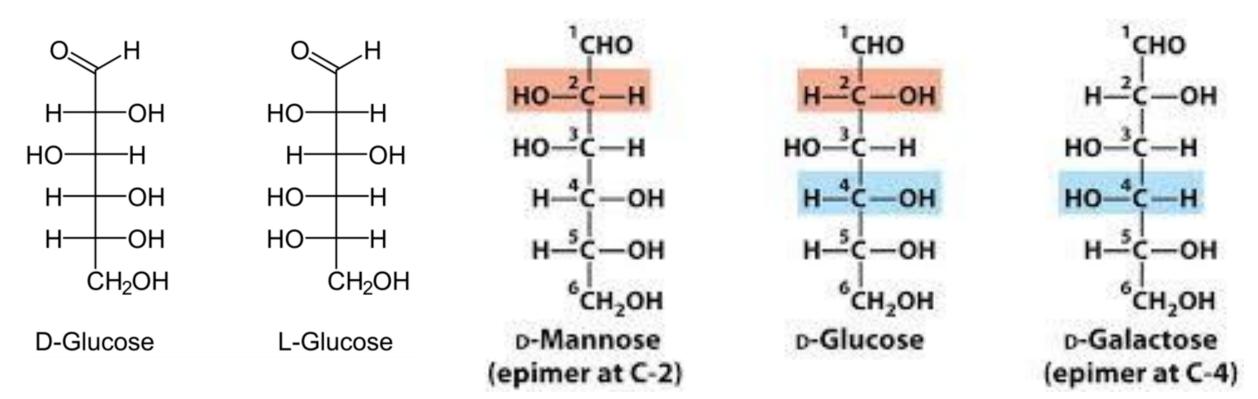
Cellulose

Amylopectin

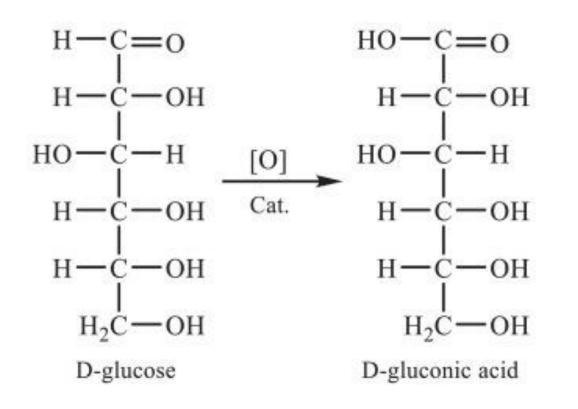
Amylose

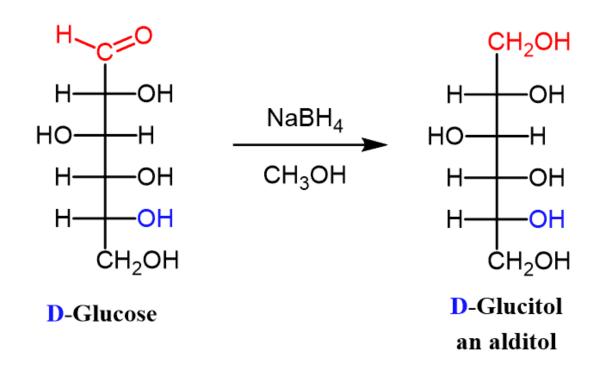
Amylopectin

1.It is a straight chain polymer of D-glucose units which constitutes about 20% units which constitutes of the starch.

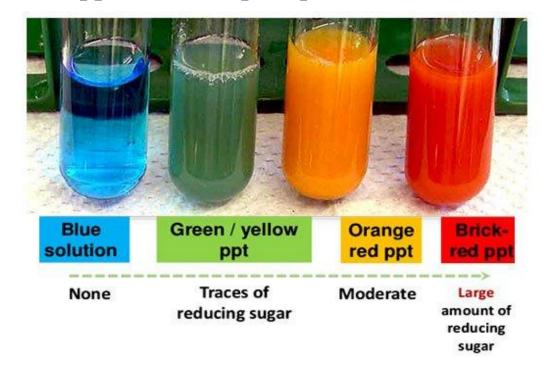

It is the branched chain polymer of the D-glucose about 80% of the starch.

PHYSICAL PROPERTIES

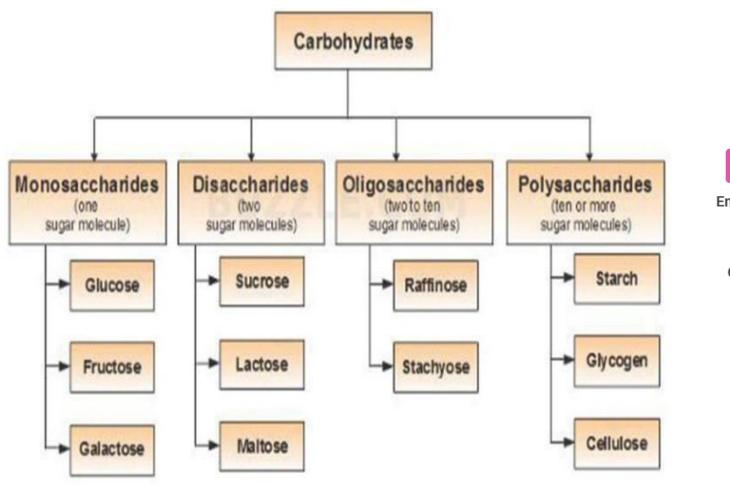

- 1. Stereoisomerism: Same formula, different spatial configuration (e.g., D-glucose, L-glucose).
- 2. Diastereoisomers: Configurational changes at C2, C3, or C4 (e.g., mannose, galactose).

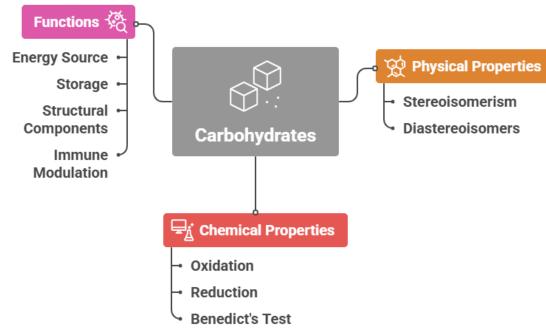


CHEMICAL PROPERTIES


- 1. Oxidation: Monosaccharides oxidize to carboxylic acids (e.g., glucose to gluconic acid).
- **2. Reduction**: Carbonyl groups reduce to alcohols (alditols) using NaBH₄ or hydrogenation.

- **3. Benedict's Test**: Reducing sugars change color(blue \rightarrow brick-red)due to copper reduction.
- It is a mixture of sodium citrate, sodium carbonate, and copper(II) sulfate pentahydrate.
- When heated with a reducing sugar, the reagent changes color from blue to brick-red due to a reduction reaction that forms a copper(I) oxide precipitate.


FUNCTIONS



- Primary energy source (4 kcal/gram), broken down via glycolysis/Kreb's cycle.
- Stored as glycogen (animals) or starch (plants).
- Structural components: Cell walls (plants: cellulose, bacteria: peptidoglycan).
- Form RNA/DNA framework, connective tissues.
- Modulate immune system.

SUMMARY

REFERENCES

- Nelson, D. L., & Cox, M. M. (2017). Lehninger Principles of Biochemistry (7th ed.).
- Boons, G.-J. (1998). Carbohydrate Chemistry (1st ed.). Springer.
- PubChem Carbohydrates: https://pubchem.ncbi.nlm.nih.gov
- ChemLibreTexts Carbohydrates:
 https://chem.libretexts.org/Bookshelves/Organic Chemistry/Supplemental Modules (Organic Chemistry)/Carbohydrates
- Biology Online Carbohydrates: https://www.biologyonline.com/dictionary/carbohydrate

THANK YOU