SNS COLLEGE OF ALLIED HEALTH SCIENCE

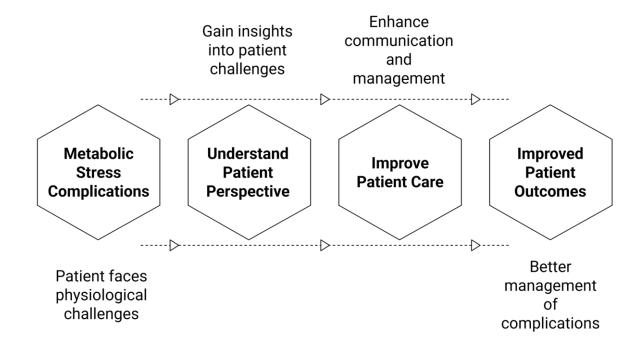
DEPARTMENT OF CARDIOPULMONARY PERFUSION CARE TECHNOLOGY

COURSE NAME: CPB and Perfusion Technology

UNIT: I

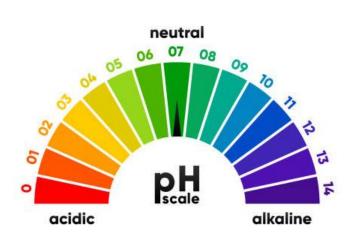
TOPIC: Metabolic Aspects of Heart and Lung Bypass

FACULTY NAME: Mrs. Saranyaa Prasath

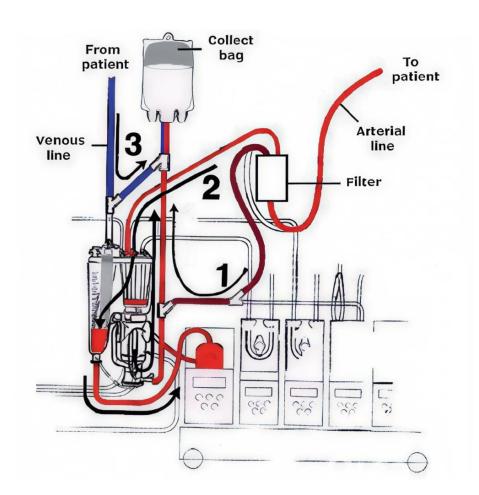

Empathize — Understanding Patient Challenges During Heart-Lung Bypass

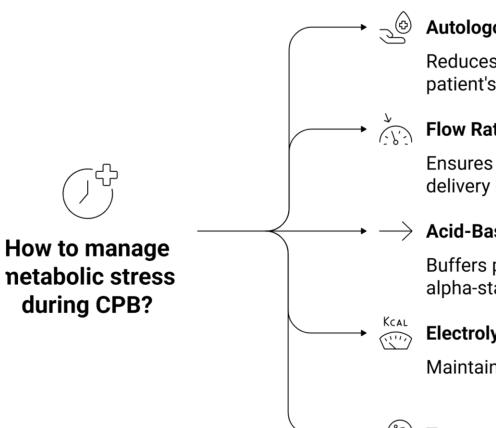
Case Study:

- Patient Background: 60-year-old male scheduled for cardiac surgery with cardiopulmonary bypass (CPB)
- Clinical challenges: Hypoperfusion, fluid shifts, acid-base imbalance, electrolyte disturbance during bypass


Prioritizing Patient Experience in CPB

Define — Core Metabolic Challenges in CPB





- Fluid priming effects: Hemodilution causing decreased hematocrit and plasma proteins
- Organ hypoperfusion and oxygen delivery inadequacy
- Acid-base imbalances (respiratory/metabolic acidosis and alkalosis)
- Electrolyte disturbances: potassium, calcium, magnesium, phosphate
- Temperature-related metabolic demand changes

Ideate — Metabolic Management Strategies

Autologous Priming

Reduces hemodilution by using patient's own blood.

Flow Rate Management

Ensures adequate oxygen delivery based on temperature.

Acid-Base Strategy

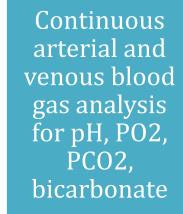
Buffers pH alterations using alpha-stat or pH-stat.

Electrolyte Supplementation

Maintains electrolyte balance.

Temperature Regulation

Balances oxygen affinity and metabolic rate.


- Prime CPB circuit partially with patient's blood (autologous priming)
- Use ultrafiltration to concentrate blood and preserve coagulation factors
- Correct acid-base imbalances: adjust sweep gas and administer sodium bicarbonate

Test — Monitoring and Feedback During CPB

Sv02
monitoring
for oxygen
deliverydemand
balance

Adjust flow rates and gas composition per real-time metabolic data

Electrolyte level checks and timely correction

Case Study
outcome:
Stable
hemodynamic
and metabolic
parameters
throughout
surgery

Case Study Detailed Data and Intervention

- Interventions: ultrafiltration, electrolyte correction, temperature regulation, acid-base balancing
- Patient's metabolic parameters stabilized, facilitating successful surgery and recovery

Parameter	Normal Range	Units
рН	7.35 – 7.45	-
PaO2 (Partial pressure of oxygen)	80 – 100	mm Hg
PaCO2 (Partial pressure of carbon dioxide)	35 – 45	mm Hg
HCO3- (Bicarbonate)	22 – 26	mEq/L
SaO2 (Oxygen saturation)	95 – 100	%
Base Excess (BE)	-2 - +2	mEq/L

Key Metabolic Concepts in CPB

- Hemodilution leads to decreased oxygen carrying capacity and colloid osmotic pressure
- Hypothermia reduces metabolic oxygen demand but affects oxygen affinity (left shift of curve)
- Metabolic acidosis mainly due to hypoperfusion increases lactate; corrected by flow and bicarbonate
- Electrolyte imbalances critical to monitor to avoid cardiac arrhythmias and complications

Metabolic Imbalance

Unsafe CPB outcomes

Design Thinking Framework

Optimized Balance

Safe and successful CPB

Track metabolic changes closely

Adjust strategies as needed

- "Guidelines for Perioperative Care in Cardiac Surgery," American Heart Association, 2024, available at https://www.heart.org
- "Metabolic and Acid-Base Balance in Cardiopulmonary Bypass," Journal of Cardiothoracic Surgery, 2023.
- Cambridge Core: Metabolic Management During CPB, 2009.
- AHA: Diagnosis and Management of Metabolic Syndrome, 2005.
- Journal of Biomedical Engineering: Advances in CPB Technology, 2024

THANK YOU