

SNS COLLEGE OF ALLIED HEALTH SCIENCE

SNS Kalvi Nagar, Coimbatore 35 Affiliated to Dr MGR Medical University, Chennai

DEPARTMENT OF OPERATION THEATRE AND ANAESTHESIA TECHNOLOGY II YEAR

COURSE NAME: PHARMACOLOGY

TOPIC INOTROPES

MRS.GAYATHIRI.K Lecturer

INOTROPES

Definition:

Inotropes are pharmacological agents that alter the force or strength of myocardial contraction (cardiac contractility).

Classes of Inotropes:

- 1. Positive Inotropes: Enhance myocardial contractility (e.g., catecholamines, phosphodiesterase inhibitors, cardiac glycosides).
- 2. Negative Inotropes: Reduce myocardial contractility (e.g., betablockers, calcium channel blockers).

CLASSIFICATION OF POSITIVE INOTROPES

1. Catecholamines:

Epinephrine (Adrenaline)

Norepinephrine (Noradrenaline)

Dopamine

Dobutamine

Isoprenaline (Isoproterenol)

2. Phosphodiesterase Inhibitors:

Milrinone

Amrinone (Inamrinone)

CLASSIFICATION OF NEGATIVE INOTROPES:

1. BetaBlockers:

Atenolol Propranolol Metoprolol

2. Calcium Channel Blockers:

Verapamil

Diltiazem

3. Antiarrhythmics (e.g., Class I and III agents like amiodarone, though primarily used for rhythm control).

PHARMACODYNAMICS

POSITIVE INOTROPES:

Catecholamines: Stimulate β1adrenergic receptors, leading to increased contractility and heart rate. Epinephrine and norepinephrine also act on αreceptors, causing vasoconstriction.

Phosphodiesterase Inhibitors: Inhibit PDE3, increasing cyclic AMP,

Cardiac Glycosides: Inhibit Na+/K+ATPase, increasing intracellular sodium, which reduces calcium extrusion via the Na+/Ca2+ exchanger, enhancing contractility.

Levosimendan: Sensitizes troponin C to calcium, improving contractility without increasing oxygen demand; also opens ATP sensitive potassium channels, causing vasodilation.

PHARMACODYNAMICS

NEGATIVE INOTROPES

BetaBlockers: Block β1adrenergic receptors, reducing cyclic AMP and calcium influx, decreasing contractility and heart rate.

Calcium Channel Blockers: Inhibit calcium entry into cardiac and smooth muscle cells, reducing contractility and causing vasodilation.

ADRENALINE (EPINEPHRINE)

Class: Sympathomimetic (catecholamine)

Pharmacodynamics: Acts on alpha-1, alpha-2, beta-1, and beta-2 adrenergic receptors, increasing heart rate, contractility, blood pressure, and causing bronchodilation and vasoconstriction.

Pharmacokinetics:

Metabolism: Hepatic

Excretion: Renal

Dilution: IV: 1 mg (1 mL of 1:1000) in 10 mL normal saline (NS) to make 1:10,000.

Endotracheal: 2–2.5 mg diluted in 5–10 mL NS.

Dosage: Cardiac arrest: 1 mg IV every 3–5 minutes.

Anaphylaxis: 0.3–0.5 mg IM (1:1000) every 5–15 minutes.

Infusion: 0.01–0.1 mcg/kg/min for hypotension.

Mechanism of Action: Binds to adrenergic receptors, activating G-protein-coupled pathways, increasing cyclic AMP (beta receptors) or intracellular calcium (alpha receptors).

Adverse Effects: Tachycardia, hypertension, arrhythmias, anxiety, tremors, headache, pulmonary edema.

Uses: Cardiac arrest, anaphylaxis, severe hypotension, bronchospasm (e.g., asthma).

Mode of Administration: IV, IM, SC, endotracheal, intracardiac (emergency).

ISOPRENALINE (ISOPROTERENOL)

Class: Sympathomimetic (synthetic catecholamine)

Definition: A synthetic beta-adrenergic agonist, primarily stimulating beta-1 and beta-2

receptors.

Pharmacodynamics: Increases heart rate and contractility (beta-1), causes bronchodilation and vasodilation (beta-2).

Pharmacokinetics:

Metabolism: Hepatic

Excretion: Renal

Mechanism of Action: Stimulates beta receptors, increasing cyclic AMP, leading to cardiac stimulation and smooth muscle relaxation.

Adverse Effects: Tachycardia, palpitations, hypotension, arrhythmias, angina.

Uses: Bradycardia refractory to atropine, torsades de pointes, bronchospasm (rarely used).

Mode of Administration: IV infusion.

Dilution: 1 mg in 500 mL D5W or NS (2 mcg/mL).

Dosage: 0.01–0.2 mcg/kg/min.

EPHEDRINE

Class: Sympathomimetic (indirect-acting)

Definition: Stimulates release of norepinephrine from nerve endings.

Pharmacodynamics: Increases heart rate, blood pressure, bronchodilation.

Pharmacokinetics:

Metabolism: Hepatic.

Excretion: Renal

Mechanism of Action: Releases norepinephrine, stimulating adrenergic receptors.

Adverse Effects: Tachycardia, hypertension, anxiety, insomnia, urinary retention.

Uses: Hypotension, nasal decongestion, asthma (historical).

Mode of Administration: IV, IM, oral.

Dilution: 5 mg/mL, may dilute in 5–10 mL NS for IV.

Dosage: 5–25 mg IV or IM, 25–50 mg oral.

DOPAMINE

Class: Sympathomimetic (catecholamine)

Definition: Precursor to norepinephrine, used as an inotrope and vasopressor.

Pharmacodynamics: Stimulates beta-1, alpha-1, and dopamine receptors; dose-dependent effects

(low: renal vasodilation; high: vasoconstriction).

Pharmacokinetics:

Absorption: IV only.

Metabolism: MAO and COMT.

Excretion: Renal, half-life ~2 minutes.

Mechanism of Action: Activates adrenergic and dopaminergic receptors, increasing cyclic AMP.

Adverse Effects: Tachycardia, arrhythmias, hypertension, angina, gangrene (extravasation).

Uses: Hypotension, shock, heart failure.

Mode of Administration: IV infusion.

Dilution: 400 mg in 250 mL D5W or NS (1600 mcg/mL).

Dosage: 2–20 mcg/kg/min, titrated to effect.

DOBUTAMINE

Class: Sympathomimetic (synthetic catecholamine)

Definition: Selective beta-1 adrenergic agonist.

Pharmacodynamics: Increases cardiac contractility and heart rate, minimal vascular effects.

Pharmacokinetics:

Absorption: IV only.

Distribution: Wide.

Metabolism: Hepatic.

Excretion: Renal

Mechanism of Action: Stimulates beta-1 receptors, increasing cyclic AMP.

Adverse Effects: Tachycardia, arrhythmias, hypertension, angina.

Uses: Heart failure, cardiogenic shock.

Mode of Administration: IV infusion.

Dilution: 250 mg in 250 mL D5W or NS (1000 mcg/mL).

Dosage: 0.5–20 mcg/kg/min, commonly 2.5–5 mcg/kg/min.

NOREPINEPHRINE (NORADRENALINE)

Class: Sympathomimetic (catecholamine)

Definition: Endogenous catecholamine used as a vasopressor with inotropic effects

Pharmacokinetics: Metabolism: Hepatic Excretion: Renal.

Mechanism of Action: Binds to adrenergic receptors, activating G-protein-coupled pathways; beta-1 stimulation increases cyclic AMP, enhancing calcium influx for inotropy; alpha-1 increases intracellular calcium for vasoconstriction.

Adverse Effects: Tachycardia, hypertension, arrhythmias, peripheral ischemia, tissue necrosis (from extravasation), anxiety, headache, pulmonary edema.

Uses: Septic shock, cardiogenic shock, hypotension unresponsive to fluids, adjunct in cardiac arrest.

Mode of Administration: IV infusion (preferably via central line to avoid extravasation).

Dilution: 4-16 mg in 250 mL D5W or NS (16-64 mcg/mL concentration).

Dosage: Initial: 0.01-0.1 mcg/kg/min IV infusion; titrate up to 0.5-1 mcg/kg/min for severe

hypotension.

MILRINONE

Class: Phosphodiesterase inhibitor (PDE3 inhibitor)

Definition: Bipyridine derivative used as an inodilator for short-term management of heart failure.

Pharmacodynamics: Increases myocardial contractility (inotropy), improves relaxation (lusitropy), and causes peripheral and pulmonary vasodilation, reducing preload and afterload.

Pharmacokinetics: Metabolism: Hepatic). Excretion: Renal

Mechanism of Action: Inhibits PDE3 enzyme, preventing breakdown of cyclic AMP, leading to increased intracellular cAMP, enhanced calcium handling, and smooth muscle relaxation.

Adverse Effects: Hypotension, arrhythmias (ventricular tachycardia), headache, nausea, thrombocytopenia (less common than amrinone), hypokalemia.

Uses: Acute decompensated heart failure, cardiogenic shock, post-cardiac surgery support.

Mode of Administration: IV bolus followed by infusion.

Dilution: Dilute in 0.45% or 0.9% NS or D5W; typical concentration 200 mcg/mL.

Dosage: Loading: 50 mcg/kg IV over 10 minutes; maintenance: 0.375-0.75 mcg/kg/min (adjust for

renal function; max 1.13 mg/kg/day)

LEVOSIMENDAN

Class: Calcium sensitizer (with PDE3 inhibitory and K+ channel opening effects)

Definition: Inodilator that enhances myocardial contractility without increasing oxygen demand, used for acute heart failure.

Pharmacodynamics: Increases contractility, causes arterial and venous vasodilation, improves lusitropy; minimal increase in heart rate.

Pharmacokinetics: Metabolism: Hepatic Excretion: Fecal (majority), renal (minor

Mechanism of Action: Binds to troponin C, sensitizing it to calcium for inotropy; mild PDE3 inhibition increases cAMP; opens ATP-sensitive K+ channels for vasodilation.

Adverse Effects: Hypotension, headache, atrial fibrillation, tachycardia, nausea, hypokalemia.

Uses: Acutely decompensated chronic heart failure, cardiogenic shock, post-cardiac surgery low-output syndrome.

Mode of Administration: IV infusion (over 24 hours; optional loading dose).

Dilution: Dilute in D5W to 0.025-0.05 mg/mL.

Dosage: Loading (optional): 6-24 mcg/kg over 10 minutes; maintenance: 0.05-0.2 mcg/kg/min for

24 hours.

GLUCAGON

Class: Hormone (pancreatic alpha-cell derived)

Definition: Polypeptide hormone primarily for hypoglycemia, with secondary inotropic effects in overdose scenarios.

Pharmacodynamics: Positive inotropic and chronotropic effects on the heart

Pharmacokinetics:

Absorption: IV, IM, SC, intranasal. Metabolism: Hepatic, renal, plasma. Excretion: Renal

Mechanism of Action: Binds to glucagon receptors (G-protein-coupled), increasing cyclic AMP independently of beta-adrenergic pathways, enhancing contractility and rate.

Adverse Effects:

Nausea, vomiting, hyperglycemia, hypokalemia, tachycardia, hypertension, abdominal pain.

Uses: Beta-blocker or calcium channel blocker overdose (for inotropy), severe hypoglycemia, adjunct in anaphylaxis or shock.

Mode of Administration: IV bolus or infusion, IM, SC.

Dilution: Reconstitute 1 mg vial with sterile water; for infusion, dilute in D5W or NS (e.g., 10 mg in 100 mL).

Dosage: Inotropy (overdose): 2-5 mg IV bolus (repeat if needed), then 1-10 mg/hour infusion;

hypoglycemia: 1 mg IV/IM/SC

DIGOXIN

- •Definition: Cardiac glycoside for rate control.
- •Mechanism of Action: Inhibits Na+/K+ ATPase, increases vagal tone, slows AV conduction.
- •Pharmacodynamics: Slows heart rate in atrial fibrillation, no QT effect.
- •Pharmacokinetics:
 - **Absorption**: Oral.
 - Metabolism: Minimal hepatic.
 - Excretion: Renal
 - **Dosage**: 0.5-1 mg (loading), 0.125-0.25 mg/day.
- •Onset/Duration: 1-2 hours (oral), 5-30 min (IV)/2-3 days.
- •Interactions: Amiodarone, verapamil increase levels.
- •Side Effects: Nausea, arrhythmias, visual disturbances

Comparison Table of Positive Inotropes

188 AS						WWW spsgroups	FrameWork
Drug	Class	Mechanism	Dosage	Adverse Effects		Administ ration	S-COIII
Epinephrine	Catecholamine	agonist; \uparrow cAMP	0.3-0.5 mg IM; Infusion:	hypertension, arrhythmias,	hypotension.	IV, IM, SC	IV: 1 mg in 10 mL NS (1:10,000); ET: 2- 2.5 mg in 5-10 mL NS
Norepinephrin e	Catecholamine		titrate to 0.5-1 mcg/kg/min	hypertension	c shock,	Infusion (central	4-16 mg in 250 mL D5W/NS (16- 64 mcg/mL)
Dopamine	Catecholamine	β1, α1, dopamine receptors; ↑ cAMP	2-20 mcg/kg/min IV	hypertension	Ishock heart	IV infusion	400 mg in 250 mL D5W/NS (1600 mcg/mL)
II)ohiifamine		β1 agonist; ↑ cAMP	0.5-20 mcg/kg/min IV	Tachycardia,	Heart failure, cardiogenic shock	IV infusion	250 mg in 250 mL D5W/NS (1000 mcg/mL)
Hsonrenaline		β1, β2 agonist; ↑ cAMP	0.01-0.2 mcg/kg/min 1V	hypotension,	ltorgades	IV infusion	1 mg in 500 mL D5W/NS (2 mcg/mL)

Inotropes/Pharmacology/SNSCAHS/Mrs.Gayathiri.K

Thir Thir										
Drug	Class	Mechanism	Dosage	Adverse Effects	II J S e S	Administ ration	FrameWork Dilution			
IVIIIrinone	PDE3 Inhibitor	cAMP, ↑ Ca2+	1 v; Maintenance: 0.375-0.75 mcg/kg/min	thrombocytopenia	Acute heart failure, cardiogenic shock		200 mcg/mL in NS/D5W			
lAmrinone		CAMP	,	Thrombocytopenia, hypotension, hepatotoxicity	Congestive heart failure	I 	1-3 mg/mL in NS/D5W			
II Digayin	Glycoside	ATPase; ↑ Ca2+	Maintenance: 0.125- 0.25 mg/day	disturbances	Heart failure, atrial fibrillation	iciral IV	IV: undiluted			
	Sensitizer	K + channel	Loading: 6-24 mcg/kg; Maintenance: 0.05-0.2 mcg/kg/min	Hypotension, tachycardia, atrial fibrillation	Acute heart failure, cardiogenic shock	IV infusion	0.025-0.05 mg/mL in D5W			
Glucagon	Hormone	↑ cAMP (non-	bolus, 1-10 mg/hr;	,	loverdose	IV, IM, SC	10 mg in 100 mL D5W/NS			

THANK YOU