

SNS COLLEGE OF ALLIED HEALTH SCIENCES

SNS Kalvi Nagar, Coimbatore - 35 Affiliated to Dr MGR Medical University, Chennai

DEPARTMENT OF OPERATION THEATRE AND ANAESTHESIA TECHNOLOGY - II YEAR

COURSE NAME: STERILISATION PROCEDURES

TOPIC - STERILISATION AND DISINFECTION

MRS.GAYATHIRI.K
Lecturer
OTAT
SNSCAHS

INTRODUCTION

BACTERIOSTATIC: agents only precent the multiplication of bacteria which may ,however

CLEANING: plays an important role in preparatory role by sterilization or disinfection by removing soil & other dirt and reducing the microbial burden making sterilization more effective.

DECONTAMINATION: Refers to the process of reducing an article or free of danger from contaminations including microbial, chemical ,radioactive and other hazards.

STERILIZATION PROCEDURES/OTAT/STERILIZATION/MRS.GAYATHIRI.K/SNSCAHS

INTRODUCTION

STERILISATION: It is defined as the process of killing all microorganisms including bacteria, bacterial spores, fungi, and virus

DISINFECTION: it means the destruction or removal of all pathogenic organism capable of giving rise to infection

ANTISEPTICS: are disinfection that can be used on body surfaces such as the skin or vaginal tract to reduce the number of normal floral and pathogenic contaminants

BACTERICIDAL OR

GERMICIDAL: agents can kill bacteria

Heat

METHODS OF STERILIZATION

PHYSICAL

Filtration

Radiation

- **DRY HEAT** > Candle filter
- ➤ Red heat)
- >Asbestos filter
- >Flaming
- ➤ Sintered glass filter

➤ Membrane filter

- > Incineration
- ➤ Hot air oven

➤ Ionizing (Gamma

- rays)
- ➤ Non Ionizing (UV rays)

→MOIST HEAT

- ➤ Below 100 °C (pasteurization)
- > At 100°C (Boiling)
- ➤ Above 100 °C (Autoclave)

CHEMICAL

- > Alcohol
- **≻**Aldehydes
- **≻**Biguanides
- >Beta
- **▶** Propiolactone
- >Surfactants
- >Phenol
- > Halogens
- ➤ Metallic salt
- > Peroxide
- > Dyes
- ➤ Quaternary Ammonium compound

- > Surfactants
- > Peroxides
- > Alcohols
- > Aldehydes
- > Biguanides
- > Dyes
- > Betapropiolactons
- > Halogens
- > Metalic salt
- > Phenolic compounds
- > Quaternary ammonium compounds

- *I.* Disinfection
- II. Gaseous sterilization

PROPERTICS OF AN IDEAL DISINFECTION:

- Should have a wide spectum of activity and be effective against all microorganism
- 2) Should not be toxic to human tissue of
- 3) Should be active in presence of organic matter such as body fluid, blood pus
- Should be compatible with other antiseptics and disinfectants.
- 5) Should be effective at all ph ranges.

- *I.* Disinfection
- II. Gaseous sterilization

PROPERTICS OF AN IDEAL DISINFECTION:

- Should have a wide spectum of activity and be effective against all microorganism
- 2) Should not be toxic to human tissue of
- 3) Should be active in presence of organic matter such as body fluid, blood pus
- Should be compatible with other antiseptics and disinfectants.
- 5) Should be effective at all ph ranges.

FACTORS WHICH DETERMINE THE POTENCY OF A DISINFECTION:

Concentration of the disinfection	If the disinfection is diluted potency will be reduced
Time of action	disinfection process
Nature of organism :	Sporing bacteria may not be affected by
. PH of medium :	Some disinfection might get inactivated
Temperature	Increase in temperature increase the disinfection rate of reaction

- *I.* Disinfection
- II. Gaseous sterilization

PROPERTICS OF AN IDEAL DISINFECTION:

- Should have a wide spectum of activity and be effective against all microorganism
- > Should not be toxic to human tissue of
- Should be active in presence of organic matter such as body fluid, blood pus
- Should be compatible with other antiseptics and disinfectants.
- > Should be effective at all ph ranges.

MECHANISM OF ACTION:

- 1. Coagulation of protein.
- 2. Lysis of cell membrane.
- 3. Substrate competition and interference with enzyme functioning.
- 4. Interaction with various functional groups.

CHEMICAL AGENTS	MECHANISM	USES
1. Alcohol (Ethanol, Isopropanol)	Denaturation of bacterial proteins	Skin antiseptics, surface decontamination of incubators & cabinet interiors, disinfection clinical thermometer.
2. Aldehydes (Glutaraldehyde, Formaldehyde)	Inactivation of bacterial proteins.	Preservation of biological specimens, destroying another spores in fumigation. Cold sterilization and fixation, surface decontamination, disinfection of hospital instruments requirements glass wares.
3. Biguanides(Chlorhexidine)	Damage plasma membrane	Skin & mucous membrane Disinfection.

4. Beta Propiolactone	Damage DNA, RNA & cause Alkylation.	Fumigation, sterilization of biological products.
5. Surfactants (Soap and detergents Na lauryl sulphate, benzalkonium chloride cetrimide.	Disruptor of cell membrane	Detergents and wetting agents
6. Phenol compounds (Phenol, Cresol, Lysol)	Damage to cell membrane, inactivation of proteins, oxidizes & dehydrogenases.	Disinfection in hospital
7. Halogens (Chlorine eg: Na hypochlorite, chloramines, hypochlorous, acid, iodine) Eg: Tincture iodine, Povidone iodine.	Oxidizing agent , Protein Denaturation STERILIZATION PROCEDURES/OTAT/STERILIZATION/MRS.GAYATHIR	Surface decontamination emergency spill clean up disinfectant. Antiseptic surface decontanimation, Instruments disinfection

7. Peroxide (Hydrogen peroxide)	Oxidizing agent	Disinfection
8. Metallic salt (Silver, eg: silver nitrate, mercury) Eg: Methiolate, mercurochrome.	Combine with sulphydryl groups, coagulation proteins & inactivate enzymes .	Antiseptic to purent against gonorrheal infection in infants, Antiseptic on wound .
10. Dyes (Aniline dyes, malachite green acridine dyes, acriflavine, proflavine.	React with acid group in cell. Impair DNA& destroy reproductive capacity.	Selective agents in culture media, eg: LJ media skin antiseptic.
11.Quaternary Ammonium compounds (Zephiran, Triclosan)	Sulfate active agents (cationic detergent)	Surface decontamination & disinfection equipments .

TESTING OF DISINFECTION:

1. Testing of disinfectants: It compares the efficiency of a disinfectant with phenol.

PRINCIPLE:

- Equal quantity of organisms are subjected to the action of varying concentration of phenol & the disinfection to be tested.
- > That concentration of disinfection needed to sterilize the organism in a given time divided by the corresponding concentration of phenol is called the phenol coefficient of that disinfectant.
- Any disinfectant with a phenol coefficient of 1 is equal to phenol as a disinfection. A phenol coefficient of greater than 1 means that the test disinfectant is better than phenol.

- a) Deal walker test: The disinfectant dilution are made using distilled water & tested.
- b) Chick martin test: The disinfectant are tested in presence of organic matter (dried yeast).
- 2. Capacity dilution test: It involved adding of bacterial in oculars to the disinfected in 3 successive lots at 0,1 and 5minutes, this is the principle of capacity test where the capacity or lack of capacity of the disinfection to destroy the successive addition of bacterial culture is tested.

IN USE TEST:-

It is done for hospital disinfectants.

GASEOUS STERILANTS:-

ETHYLENE OXIDE:

- > Highly explosive, expensive.
- > Acts by denaturation of proteins and damage to DNA.
- > Acts best at 50 55 °C and has a boiling point of 10.7 °C.
- > It is an excellent sterilizing agent for those materials destroyed by heat.
- > Its disadvantages: carcinogen & mutagen
- > used for the sterilization of
 - heart lung machine
 - Respirators
 - Sutures
 - Dental equipment
 - Clothing

FORMALDEHYDE GAS:-

- > Acts against amino group of protein molecules & inactivates them.
- > It has a pungent odour & is irritated to the skin, eyes and respiratory tract.
- > 37% aqueous formaldehyde (formalin) is used to preserve biological specimens & inactive viruses & bacteria in vaccines.

PHYSICAL AGENTS

HEAT:-

- > Most reliable method of sterilization factors affecting heat as a method of sterilization.
- > Types of heat: Dry heat
- Moist heat
- > Temperature and time which are inversely proportional.
- > Type of article to e sterilized
- > Numbers & type of organism.

DRY HEAT :-

Acts by oxidation of essential components of the cell

FLAMMING:-

PRINCIPLE: Passing the object through the flame of Bunsen burner without heating to redness used for sterilization of

- Glass slides

- Mouth of culture tube.

INCINERATION:-

Temperature :> 1000 °C

Principle : Infection materials is covered to sterile ash by

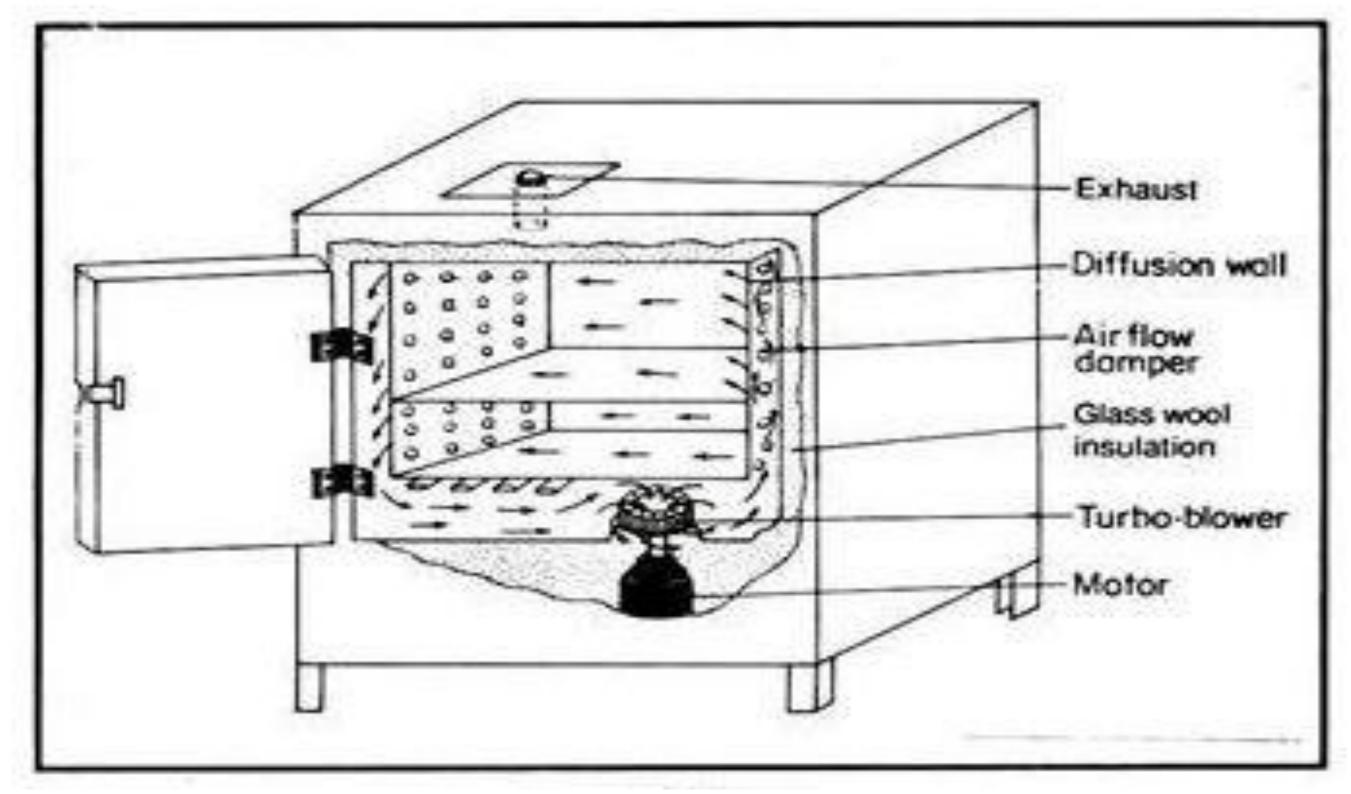
burning in incineration.

Used for : Destruction of contaminated disposable materials (

waste).

- > Most widely used method of sterilization using dry heat.
- > **PRINCIPLE**: The killing effect is brought by denaturation of enzymes & proteins and oxidation of essential all components.
- > Structure & process: It comprises of an electrically heated, insulated chamber fitted with insulated door.
- > The chamber is usually of stainless steal & the inner surfaces are polished to minimize heat loss.

- > The oven is heated electrically with heating elements in the wall of chambers.
- > Heat id delivered to the load primarily by connection & radiation.
- > A fan is fitted for efficient air circulation & heat distribution within the oven.
- > It is also fitted with thermostat to control the temperature.
- > The temperature various between $160\,^{\circ}\text{C} 170\,^{\circ}\text{C}$ & the duration of 1-2 hrs.
- > Ample spacing must be allowed in the oven to permit free circulation of hot air.


- > Containers must be placed on their side for the same reason to avoid impeding of hot air.
- > Powders, oils, fats & grease must be packed in small quantites or in thin layers to enable penetration o heat.

Uses: Sterilization of glassware(test tubes, flasks, pipettes, syringes, petridishes)

- > Sterilization of sharp surgical instruments (forceps, scalpels, scissors)
- > Sterilization of powders, fats, grease, that are not penetrate by moist heat.

MOIST HEAT:-

- > Most efficient means of sterilization.
- > Acts by denaturation and coagulation of proteins.

3 RANGES OF TEMP USING MOIST HEAT:-

Below 100 °Cspores of

> At 100 °C

> Above 100 °C

are not considered as sterilisation as

some acteria are not destroyed.

MOIST HEAT:-

BELOW 100 °C

a) Pasteurization :-

Principle: process of heating a liquid to a specific temperature for a definite length of time and then cooling it immediately.

Uses: Milk processing.

- I. HOLDER METHOD: heated at 63 °C for 30 min.
- п. FLASH METHOD: heated at 72°C for 15-20 min.

b) Water bath :-

- ► For vaccines of non sporing bacteria 60 °C
- > For serum or protein -56 °C/ hr for sever successive days.
- > For cystoscopes, specula -75° C / 10 min.
- > Clothing, bed clothes, eating utensils, nursing equipment washing at 70-80 °C for several mins.

c) Inspisation :-

- > Used for the sterilisation of culture media that contain heat sensitive ingrediants.
- The temperature used is 80-85 °C for 1\2 hour on successive days. Eg:lawnstein jenson media, loeffer serum slope.
- > The purpose of doing on 3 successive days is that on the first day vegetative bacteria are killed.
- > On the 2nd day, germinated spores are killed and on the 3rd day any other organism present is killed.

About 100 °C:-

a)Boiling :-

> Kills vegetative bacteria at 90-100 °C but sporing bacteria require a longer time. Surgical apparatus disinfected by boiling for atleast 30 minutes.

B)Steam at 100 °C:- (at atmospheric pressure)

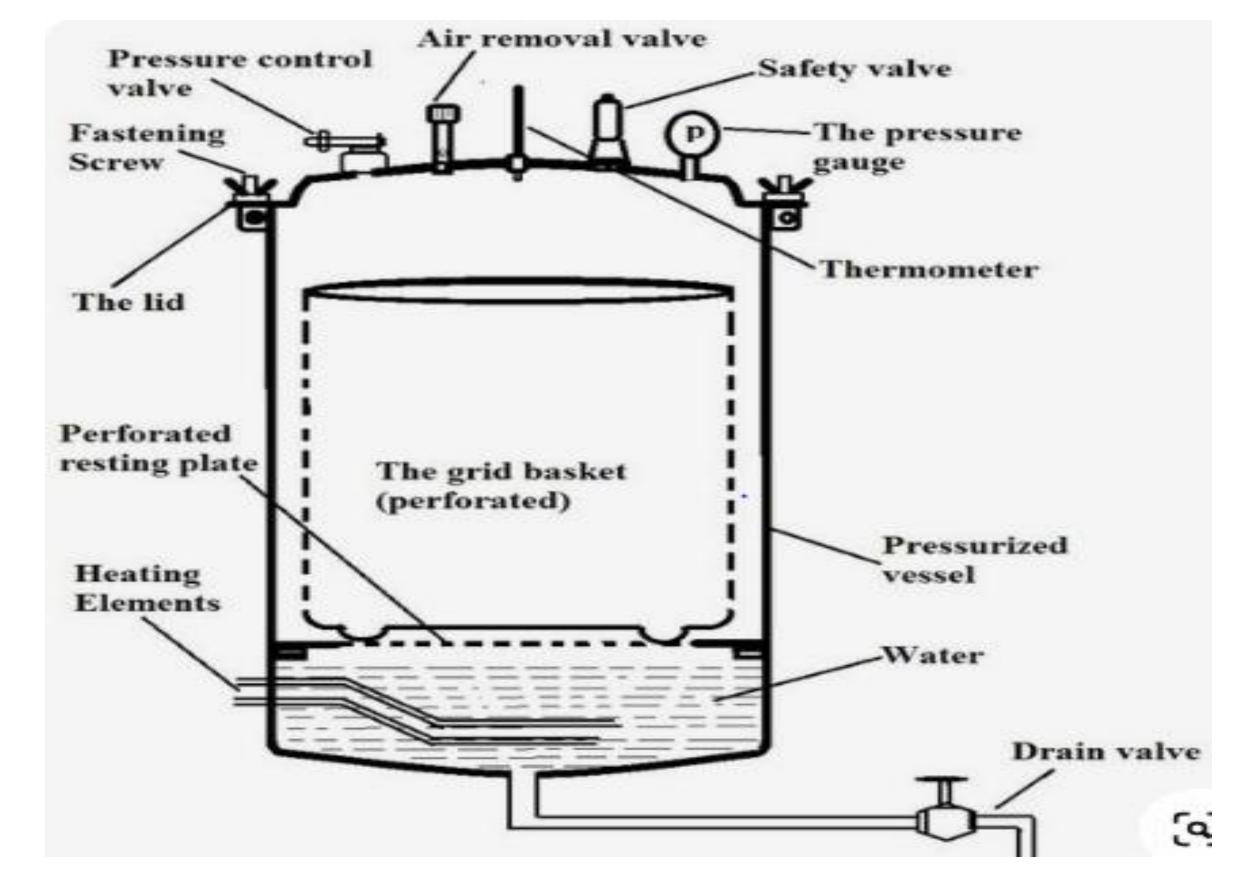
> Tyndallization: It consists of exposure at 100°C for 20 mins on 3 successive days. It is used for media containing sugars & gelatin. This process is also known as FRACTIONAL STERILIZATION. The instrument used is the koch's or Arnold's steamer.

Above 100 °C:-

> **Autoclave:** The instrument used for the sterilisation is called Autoclave or steam steriliser.

> Principle:

- > H20 boils when its vapour pressure equals that of the surrounding atmosphere.
- > Hence when pressure inside a closed vessels, increases the temperature at which H2O boils also increase producing dry saturation steam.


Principle:

- > Approximately 80% of the latent energy is dry saturation steam is in the form of latent heat. That is released when the touch a cooles object and condenses.
- > Condensation is accompanied by an instantaneous contraction of the stream (1600 ml steam at 100 °C condenses to 1ml) creating low pressure region in which more steam flows.
- > This results in penetration of steam into articles being sterilized **Types:-**
- 1) Simple laboratory autoclave
- 2) Steam jacketed autoclave
- 3) Prevaccum sterilization

STRUCTURE AND PROCESS:-

❖ The basicstructure consists of a ventrical or horizontal consists made of gunmental or stainless stell with a supporting frame . It has the following features:

- A lid or door fastened by screw clamps and made airlight with a suitable washes.
- Pressure gauge.
- Discharge tap on lid to allow air to escape.
- Safety valve that can be set to go off at the required pressure.
- *Thermometer / Temoperature gauge

- *Heating by gas or electricity.
- ❖The articles to be sterilized are placed on a perforation tray and should not be packed closely.
- The lid is closed high & the autoclave is heated.
- The discharge tap is kept open so that air stream mixture can escape.
- ❖Once all air is discharged, the discharge tap is closed.
- The pressure of steam inside the autoclave rises and when the desired pressure is reached i.e,15 pounds/sq.inch the safety valve opens and excess steam escapes.

- The process of sterilization is now kept going for 15-20 mins after the required pressure reached. The temperature attained is 121 °C.
- After the period of sterilization is completes the autoclaves is switched off and allowed to cool sufficiently till pressure, inside equal to the atmosphere pressure.
- ❖It should not be opened earlier as there may be spilling of liquids or an explosion.

uses:-

- Sterilization of culture media & glasswares.
- Sterilization of blunt surgical instruments and OT clothes.
- *Destruction of infected materials like blood, sputum.

RADIATION

- > NON IONISING
- > IONISING

> NON IONISING RADIATION:

- Infra red rays are used for mass sterlization of syringes & catheter.
- The temperature attained is 190°C for 6mins or 180°C for 12 mins
- UV radiation in the range of 240-280 are used for sterlization but 260nm in the considered bactericidal.
- They act by formation of pyramidine dimus on DNA strand.
- It is used to sterilize air and surface in room and biosafety cabinets.
- Its is used for the purification of water.

RADIATION

> IONISING RADIATIONS:

- They include x rays, gamma rays and high speed elections
- They cause damage to DNA
- They are used to sterilize antibiotic, hormones, sutures ,plastics,syringes and catheters.
- As there is no increase in the temperature of the article being sterilized it is also referred to as cold sterilization.

FILTRATION:

- > CANDLE FILTER
- > ASBESTOS FILTER
- > SINTERED GLASS FILTER
- > MEMBRANE FILTER

In this process, bacteria are removed from heat sensitives such as serum, sugar, solutions or antibiotics used for culture media preparation.

CANDLE FILTER:-

- > They are made of diatomaceous earth or kise lguhr and are available in different grades of pores sizes.
- > They are used for purification of water for industrial and drinking purpose.

THE GRADES AVAILABLE ARE:

- > V (viel) coarsest
- > W (wening) finest
- > N (normal) intermediate
- EG: Birk feld, mandles, chamberland.

ASBESTORS FILTERS:-

- > They are disposable single use filters made of magnesium silicate.
- > EG: Seity & Sterimat filter

SINTERED GLASS FILTER:-

> They consists of finely ground glass piecess that are flused together and are available in different pour sizes.

MEMBRANE FILTER:-

- > They are porous membrane about 0.1 mm thick made of cellular acetate, cellulose nitrate polycarbonate and polyvinylinder fluoxidereor some other synthetic material.
- > The membrane are supported on a frame and mild in spicial holders.
- > Fluids are made to transverse membrane by positive or negative pressure by centrifugation.

HEPA FILTER:-

- > They are high efficiency particulate air filterused to deliver bacteria free air into room.
- > They are used in operation rooms & burn units to remove bacteria from air.
- > They are used also used in laminar air flow system to prevent infestion

THANK YOU