

SNS COLLEGE OF ALLIED HEALTH SCIENCES

DEPARTMENT OF CARDIAC TECHNOLOGY -II YEAR

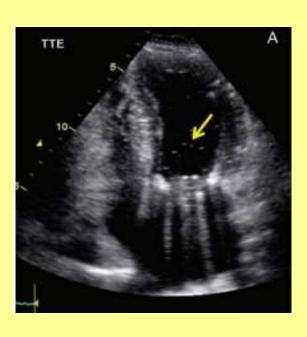
UNIT IV: PROSTHETIC VALVE ASSESSMENT

PROSTHETIC VALVE ASSESSMENT

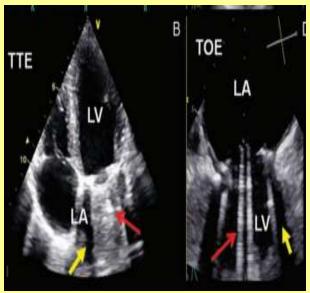
Prosthetic valve

- Severe valvular disease to mild valvular disease
- Normal vs abnormal
- Background knowledge
 - Fingerprint ECHO immediate post op ECHO + first follow up ECHO
- Time consuming
- Anthropometry BP, Height, weight, BSA
- Old ECHO clips and Reports

New Normal


- Mild increase in gradients
- Mild regurgitation
- Artifacts in 2D/Color/Doppler
- High normal chamber size

2D Artefacts


CAVITATIONS/MICROBUBBLES

Filamentous strands

- ACOUSTIC SHADOWING/
- REVERBATIONS

Doppler/Color Artefacts

- Doppler
 - Double envelope
 - Clicks
 - Multiple velocity jets

- Color
 - Physiologic jets (new normal)
 - Closing volume
 - Leakage volume
 - Washing effect
 - 1-3 jets
 - Low momentum with narrow neck

Types of Prosthetic Valves

Table I Types of prosthetic heart valves

Biological

Stented

Porcine bioprosthesis

Pericardial bioprosthesis

Stentless

Porcine bioprosthesis

Pericardial bioprosthesis

Aortic homograft

Pulmonary autograft (Ross procedure)

Sutureless

Transcatheter

Mechanical

Bileaflet

Single tilting disk

Caged ball

Design and Models

Table 2 Designs and models of biological replacement heart valve

Stented porcine replacement valve

- · Hancock standard and Hancock II
- Medtronic Mosaic*
- Carpentier-Edwards standard and supra-annular
- St Jude Medical Biocor, Bioimplant, Epic
- AorTech Aspire
- Labcor
- Carbomedics Synergy

Stentless valve Porcine

- St Jude Medical Toronto*
- Medtronic Freestyle
- Cryolife-O'Brien*
- Cryolife-Ross Stentless porcine pulmonary
- Edwards Prima Plus
- AorTech Aspire
- · St Jude Biocor
- Labcor
- St Jude Quattro stentless mitral
- Shelhigh Skeletorized Super-Stentless aortic porcine and pulmonic
- Medtronic-Venpro Contegra pulmonary valve conduit

Stented pericardial replacement valve

- Carpentier-Edwards
- Penmount
- Carpentier Edwards Magna
- Mitroflow Synergy
- St Jude Biocor pericardia
- St Jude Trifecta
- Labcor pericardial
- Sorin Pericarbon MORE*

Stentless pericardial

- Sorin Pericarbon
- . RESAVE
- Freedom Solo

Sutureless

- · Perceval S (Sorin)
- Edwards Intuity (Edwards Lifesciences)
- 3F Enable (ATS Medical)
- Trilogy (Arbor Surgical Technologies)

Table 3 Designs and models of mechanical replacement heart valve

Bileaflet mechanical replacement valves

- St Jude Medical: standard, HP, Masters, and Regent
- Carbomedics: standard, reduced cuff, Optiform, Orbis, and supra-annular (Top Hat) Carboseal includes a woven aortic graft
- Edwards Tekna
- Sorin Bicarbon
- Edwards Mira
- ATS
- On-X
- Medtronic Advantage
- lyros

Tilting disk replacement valves

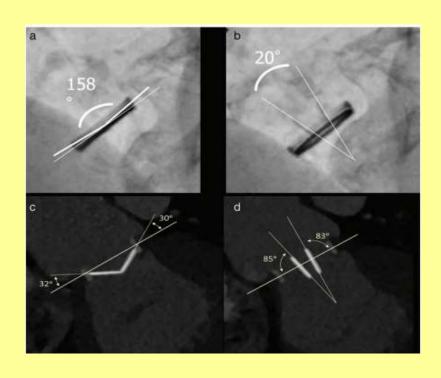
- Bjork-Shiley monostrut*
- Sorin Monoleaflet Allcarbon
- Medtronic-Hall
- Omnicarbon
- Ultracor

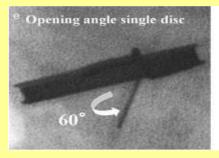
Caged ball

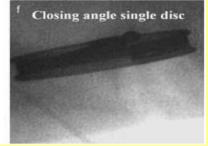
- Starr-Edwards
- Smeloff-Cutter

*Indicates withdrawn from market

Various Modalities

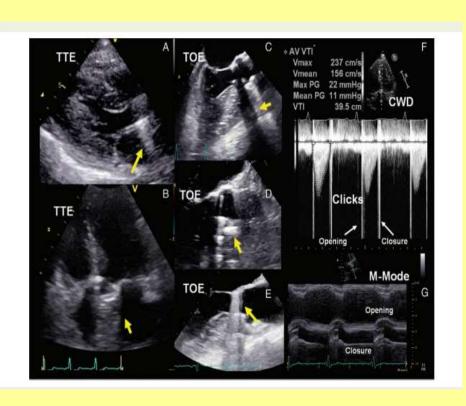


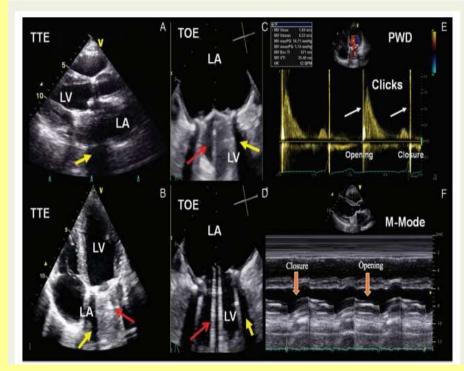

	Technical considerations	Advantages	Limitations
2D TTE	Multiple views Careful probe angulation (alignment) for accurate leaflet motion display	First-line imaging Ease of use Assessment of LV function and size and pulmonary pressure	Limited by acoustic window and body habitus Acoustic shadowing by prosthetic material Angle dependent on accuracy of Doppler data
2D TOE	Multiple views Careful probe angulation (alignment) for accurate leaflet motion display	Higher resolution than TTE Proximity of the oesophagus with the heart Better visualization of the atrial side of mitral PHV and posterior part of aortic PHV Better visualization of peri-annular complications	Acoustic shadowing by prosthetic material Angle dependent on accuracy of Doppler data
3D TOE	Multiple cropping planes Narrow angle mode/Oblique views Full-volume dataset Zoom mode	Ease of use Excellent spatial imaging Enable enface viewing (surgical view) Add on to 2D echo imaging	Poor visualization of anterior cardiac structure Poor temporal resolution Tissue dropout Lack of tissue characterization Artefacts due to an oblique (rather than horizontal) orientation of PHVs in mitral position
Cinefluoroscopy	 Postero-anterior (0°) and lateral (90°) projections 'in profile' projection (beam parallel to both the valve ring plane and the tilting axis of discs) 'en face' projection (beam parallel to the valve outflow tract) 	Ease of use Evaluation of PHV functioning Detection of calcium on the leaflets	No haemodynamic assessment No clues about the aetiology of limited disc motion
	- management of the same of		



Opening and Closing angles

Reference Angles


Table 6 Mechanical valves: opacification and opening angles


			Open	Closed
	Housing	Occluder	(Degrees)	(Degrees)
Caged-ball valves			,	
Starr-Edwards	Three (aortic) or four-strut (mitral) cobalt-chrome alloy cage	Silicone rubber	N/A	N/A
Tilting disc valves				
Björk-Shiley	Cobalt-chrome alloy	Silicon alloyed pyrolytic carbon on graphite substrate with radio-opaque tantalum marker	60 (<1981) 70 (>1981)	0
Medtronic-Hall	Titanium alloy	Silicon alloyed pyrolytic carbon on tungsten-loaded graphite substrate	75 (aortic) 70 (mitral)	0
Omniscience	Titanium alloy	Silicon alloyed pyrolytic carbon on tungsten-loaded graphite substrate	80	12
Omnicarbon	Pyrolytic carbon over graphite substrate	Silicon alloyed pyrolytic carbon on tungsten-loaded graphite substrate	80	12
Sorin Allcarbon	Cobalt-chromium alloy coated with a thin layer of pyrolytic carbon	Silicon alloyed pyrolytic carbon on tungsten-loaded graphite substrate	60	0
Bileaflet valves				
ATS Medical	Pyrolytic carbon over graphite substrate with metallic band	Silicon alloyed pyrolytic carbon on tungsten-loaded graphite substrate	85	25
Carbomedics	Solid pyrolytic carbon with titanium stiffening ring metallic band	Silicon alloyed pyrolytic carbon on tungsten-loaded graphite substrate	78-80	15
Edwards Tekna (previously Duromedics)	Solid pyrolytic carbon with titanium stiffening ring	Silicon alloyed pyrolytic carbon on tungsten-loaded graphite substrate	73-77	15
St Jude Medical	Pyrolytic carbon over graphite substrate with metallic band	Silicon alloyed pyrolytic carbon on tungsten-loaded graphite substrate	85	30 (19-25 mm 25 (27-31 mm
On-X	Pyrolytic carbon with graphite substrate with titanium alloy bands	Pure pyrolytic carbon on tungsten-loaded graphite substrate	85-90	40
Bicarbon	Cobalt-chromium alloy coated with a thin layer of pyrolytic carbon	Silicon alloyed pyrolytic carbon on tungsten-loaded graphite substrate	80	20

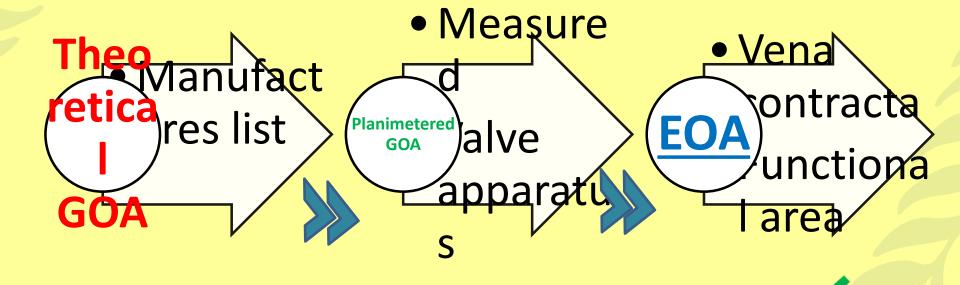
Aortic and Mitral Mechanical

Parameters checklist

- Clinical
 - Date/type/size of the valve replacement
 - Height/weight/BSA/BMI
 - BP & HR
- 2D
 - Motion of cusps/leaflets/occlude
 - Structures attached to the valve
 - Sewing ring integrity

Doppler

- Doppler scale
- Peak velocity and gradient
- Mean gradient
- DVI doppler velocity index
- PHT pressure half time
- AT,AT/ET ratio
- Measured EOA/Reference EOA/indexed EOA
- Regurgitation no/location/relation to the valve apparatus


Others

- Chambers, valves, PAH
- Comparison to the old and fingerprint reports

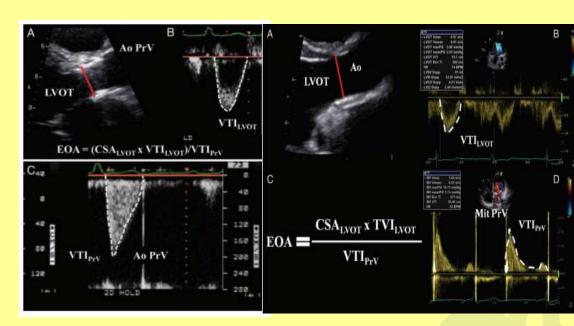
Orifice areas

DVI & EOA

$$\Delta P = 4(V_2^2)$$

$$\begin{aligned} \mathsf{EOA} &= \mathsf{CSA} \times \mathsf{VTI}_{\mathsf{LVOT}}/\mathsf{VTI}_{\mathsf{PrV}} \\ &= 0.785 \times (D_{\mathsf{LVOT}})^2 \times \mathsf{VTI}_{\mathsf{LVOT}}/\mathsf{VTI}_{\mathsf{PrV}} \\ \\ &= \mathsf{EOA} = \frac{\mathsf{Stroke \, volume}}{\mathsf{VTI}_{\mathsf{PrV}}} \end{aligned}$$

$$DVI = \frac{peak \ V_{LVOT}}{peak \ V_{PrV}} \quad or \quad \frac{VTI_{LVOT}}{VTI_{PrV}}$$


Aortic

>0.30 Aortic Valve

$$DVI = \frac{VTI_{PrV}}{VTI_{LVOT}}$$

Mitral

< 2.2 for Mechanical Aortic Valve

Mitral

Reference EOA of Aortic & Valvar prosthesis

Prosthetic valve size (mm)	19	21	23	25	27	29
Stented bioprosthetic valves	.,,					
Mosaic	1.1 ± 0.2	1.2 ± 0.3	1.4 ± 0.3	1.7 ± 0.4	1.8 ± 0.4	2.0 ± 0.4
Hancock II	-	1.2 ± 0.2	1.3 ± 0.2	1.5 ± 0.2	1.6 ± 0.2	1.6 ± 0.2
Carpentier-Edwards Perimount	1.1 ± 0.3	1.3 ± 0.4	1.5 ± 0.4	1.8 ± 0.4	2.1 ± 0.4	2.2 ± 0.4
Carpentier-Edwards Magna	1.3 ± 0.3	1.5 ± 0.3	1.8 ± 0.4	2.1 ± 0.5	-	-
Biocor (Epic)	1.0 ± 0.3	1.3 ± 0.5	1.4 ± 0.5	1.9 ± 0.7	-	4
Mitroflow	1.1 ± 0.2	1.2 ± 0.3	1.4 ± 0.3	1.6 ± 0.3	1.8 ± 0.3	-
Trifecta	1.4	1.6	1.8	2.0	2.2	2.4
Stentless bioprosthetic valves						
Medtronic Freestyle	1.2 ± 0.2	1.4 ± 0.2	1.5 ± 0.3	2.0 ± 0.4	2.3 ± 0.5	-
St Jude Medical Toronto SPV	-	1.3 ± 0.3	1.5 ± 0.5	1.7 ± 0.8	2.1 ± 0.7	2.7 ± 1.0
Prima Edwards	-	1.3 ± 0.3	1.6 ± 0.3	1.9 ± 0.4	-	-
Mechanical valves						
Medtronic-Hall	1.2 ± 0.2	1.3 ± 0.2	-	-	-	-
St Jude Medical Standard	1.0 ± 0.2	1.4 ± 0.2	1.5 ± 0.5	2.1 ± 0.4	2.7 ± 0.6	3.2 ± 0.3
St Jude Medical Regent	1.6 ± 0.4	2.0 ± 0.7	2.2 ± 0.9	2.5 ± 0.9	3.6 ± 1.3	4.4 ± 0.6
MCRI On-X	1.5 ± 0.2	1.7 ± 0.4	2.0 ± 0.6	2.4 ± 0.8	3.2 ± 0.6	3.2 ± 0.6
Carbomedics Standard and Top Hat	1.0 ± 0.4	1.5 ± 0.3	1.7 ± 0.3	2.0 ± 0.4	2.5 ± 0.4	2.6 ± 0.4
ATS Medical ^a	1.1 ± 0.3	1.6 ± 0.4	1.8 ± 0.5	1.9 ± 0.3	2.3 ± 0.8	-

Prosthetic valve size (mm)	25	27	29	31	33
Stented bioprosthetic valves					
Medtronic Mosaic	1.5 ± 0.4	1.7 ± 0.5	1.9 ± 0.5	1.9 ± 0.5	_
Hancock II	1.5 ± 0.4	1.8 ± 0.5	1.9 ± 0.5	2.6 ± 0.5	2.6 ± 0.7
Carpentier-Edwards Perimount	1.6 ± 0.4	1.8 ± 0.4	2.1 ± 0.5	28	-
Mechanical valves					
St Jude Medical Standard	1.5 ± 0.3	1.7 ± 0.4	1.8 ± 0.4	2.0 ± 0.5	2.0 ± 0.5
MCRI On-X ⁴	2.2 ± 0.9				

Problems in the prosthetic valve

- Structural (valve damage)
 Endocarditis
 - Fracture
 - Wear
 - Poppet escape
 - Leaflet tear
- Non structural (normal valve)
 - Thrombus stuck valve
 - Para valvar leak
 - Pannus
 - Patient prosthesis Mismatch PPM

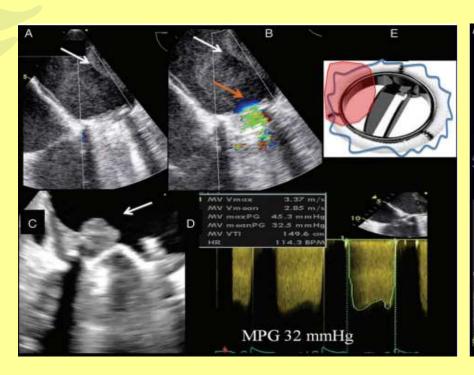
Thrombus vs Pannus

Thrombus

Acute organized blood clot attaches to the valve causing stenosis and sometimes regurgitation

Pannus

Chronic tissue overgrowth along the valve apparatus that causes stenosis


Table 10 Differential diagnosis: pannus vs. thrombosis

	Pannus	Thrombosis	
Chronology	Minimum 12 months, commonly >5 years from surgery date	Occurs at any time (if late usual associated with pannus)	
Relation to anticoagulation (low INR)	Poor relationship	Strong relationship	
Location	MV > AV	TV >> MV = AV	
Morphology	 Small mass Mostly involve suture line (Ring) Centripetal growth Confine to the disk plane Growth beneath disc 	 Larger mass than pannus Independent motion common Thin outer ring maybe visible Project into LA for MV position Mobile elements 	
Echo density (video-intensity ratio)	More >0.7 (100% specific)	Less (<0.4)	
Cardiac CT: attenuation value	>200 HU	<200 HU	
Impact on gradient	AV > MV	MV > AV	
Impact on valve orifice	AV > MV	MV > AV	
Impact on disc motion	Yes/no	Yes	

Thrombus vs Pannus

Pathologic Regurgitation

- Central/valvar vs Para valvar
- Regular regurgitation severity
- Valvar
 - Biological structural deterioration
 - Close to commissure
 - Progress usually
 - Vegetations
 - Thrombus
 - Pannus
 - Disappearance of normal Jet

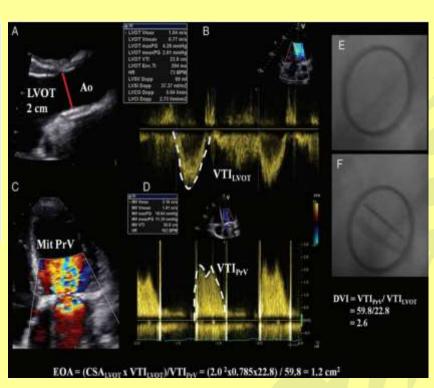
- Para valvar
 - Surgical techniques
 - Size/position/tissue quality
 - Localisation
 - **-** 5-20%

Valve Dehiscence

- Excessive motion of sewing ring
- More than 15 degree
- Mitral some motion allowed
 - Retention of posterior leaflet
- May require resurgery

Patient Prosthesis Mismatch PPM

- Normal valve in relation to the patients body size
- Early after surgery
- High gradients
- May result in suboptimal improvement after surgery
- Needs thorough comparison of every serial ECHO reports



PPM

Table 12 Imaging criteria or the identification and quantitation of prosthesis-patient mismatch

	Mild or not clinically significant	Moderate	Severe
Aortic prosthetic valves			
Indexed EOA (projected or measured)			
BMI < 30 kg/m ²	>0.85	0.85-0.66	≤0.65
BMI ≥30 kg/m ²	>0.70	0.70-0.56	≤0.55
Measured EOA vs. normal reference value ^a	Reference ± 1SD	Reference ± 1SD	Reference ± 1SD
Difference (reference EOA - measured EOA) (cm2)*	< 0.25	< 0.25	< 0.25
Valve structure and motion	Usually normal	Usually normal	Usually normal
Mitral prosthetic valves			
Indexed EOA (projected or measured)			
BMI $<$ 30 kg/m ²	>1.2	1.2-0.91	≤0.90
BMI ≥30 kg/m ²	>1.0	1.0-0.76	≤0.75
Measured EOA vs. normal reference value ^a	Reference ± 1SD	Reference ± 1SD	Reference ± 1SD
Difference (reference EOA - measured EOA) (cm2)*	< 0.25	< 0.25	< 0.25
Valve structure and motion	Usually normal	Usually normal	Usually normal

- Normal valves
- High gradients
- Less EOA and iEOA
- High DVI

Approach to **Increased Trans Mitral Valve**

gradients
LVSV_{eff} determined by Doppler echocardiography after exclusion of aortic valve regurgitation:

 D_{LVOT}

DFROA

LVSV_{off} = CSAIVOT X VTIIVOT Proportionality between the volume flow through the LVOT and the AV orifice area:

Proportionality between the regurgitant volume flow through the EROA and the MV orifice at the level of the mitral annulus:

LVSV_{tot} is normally determined by LV 2D planimetry or LV 3D volumetry. LVSV_{tot} – determination by transmitral Doppler echocardiography is

highly error-prone because of the oval shape of the mitral annulus:

 $LVSV_{tot} = CSA_{MV} \times VTI_{MV}$

 $LVSV_{tot} =$

LVSV_{eff}

+ MR_{RegVol}

THANK YOU...