SNS COLLEGE OF ALLIED HEALTH SCIENCES

SNS Kalvi Nagar, Coimbatore - 35
Affiliated to Dr MGR Medical University, Chennai

DEPARTMENT OF CARDIO PULMONARY PERFUSION CARE TECHNOLOGY

COURSE NAME : PRINCIPLES OF PERFUSION TECHNOLOGY I
2nd YEAR
TOPIC : PRINCIPLES OF EXTRACORPOREAL GAS EXCHANGE

BLOOD GASES

- The interpretation of the information contained in blood gas results is a major responsibility of the perfusionist
- Maintenance of homeostasis, the body's ability to maintain its normal physiology is greatly influenced by the gas exchange that occurs at the cellular level
- The first organ affected by inadequate oxygenation is the brain, other organs are affected soon thereafter
- The exchange of gas between the blood and cells of the tissues is known as internal respiration
- External respiration is the exchange of carbon dioxide and oxygen that takes place in the lungs or HLM
- Hemoglobin is the major portion of the red blood cell.
- Hemoglobin is responsible for transporting oxygen to the organs and tissues of the body
- About 97% of the bloods oxygen is transported by the hemoglobin
- The average adult has a basilar oxygen consumption rate of about $250 \mathrm{ml} / \mathrm{min}$
- The heart has a basilar oxygen consumption rate of $1.3 \mathrm{ml} / 100 \mathrm{gm}$ of tissue per min
- The brain has a basilar O_{2} consumption rate of $3.5 \mathrm{ml} / 100 \mathrm{gm}$ of tissue per min
- Temperature affects the oxygen consumption
- For every $7^{\circ} \mathrm{C}$ that the temperature is lowered, the metabolic rate is decreased by 50% thus lowering the oxygen consumption
- The oxygen-carrying capacity of hemoglobin is influenced by $\mathrm{pH}, \mathrm{PCO} 2$, temperature, concentration of 2,3-diphosphoglycerate (2,3-DPG), and the specific type of hemoglobin.

P50

- P50 is a reflection of a certain effect on the hemoglobin affinity for oxygen.
- The enzyme is measured is 2,3-DPG (2,3- Diphosphoglycerate)
- The term can be described as the oxygen tension when 50% of the hemoglobin is saturated at $37^{\circ} \mathrm{c}, \mathrm{PCO}_{2} 40 \mathrm{mmHg}$ and PH of 7.40 .
- Normal adult p50 (hemoglobin saturated at 50%) is 27 mmHg under these conditions
- Decreased P50 indicates increased affinity of Hb for oxygen
- Increased P50 indicates decreased affinity of Hb for oxygen

Oxygen-Hemoglobin Dissociation Curve

02 CALCULATIONS

- A fully saturated gram of hemoglobin can carry 1.34 ml of oxygen
- OXYGEN CARRYING CAPACITY

02 capacity $=1.34^{*} \mathrm{Hgb}+.003$ * pO2

- This formula assumes 100% saturation.
- Dissolved oxygen in plasma is found by p02*. 003
- It differs from the oxygen capacity in that it uses the actual 02 saturation
- OXYGEN CONTENT

Content $=1.34^{*} \mathrm{Hgb} * \%$ saturation (in decimal) $+.003 *$ pO2

- OXYGEN SATURATION

O2 saturation = 02 content $/ 02$ capacity

02 CALCULATIONS (cont)

- ON BYPASS - OXYGEN CONSUMPTION

02 consumption $=\mathrm{aO} 2$ content -vO 2 content $*$ flow $(\mathrm{l} / \mathrm{m}) * 10$

- ON BYPASS - OXYGEN TRANSFER

02 transfer $=($ Art - Ven sat in decimal form * 1.34 * Hgb * flow(ml/min) $/ 100$

PERCENT	DECIMAL
60%	0.6
80%	0.8
90%	0.9
100%	1

PARTIAL PRESSURE OF GASES

- Atmospheric gases at sea level

GAS	\% OF TOTAL	PARTIAL PRESSURE mmHg
OXYGEN	20.84	159
NITROGEN	78.62	597
CARBONDIOXIDE	.04	0.15
WATER	.5	3.85

- Partial pressure of alveolar air

GAS	\% OF TOTAL	PARTIAL PRESSURE mmHg
OXYGEN	13.6	104
NITROGEN	74.9	569
CARBONDIOXIDE	5.3	40
WATER	6.2	47

BLOOD GASES

PARAMETERS	ARTERIAL BLOOD GAS	VENOUS BLOOD GAS
pH	$7.35-7.45$	$7.35-7.39$
$\mathrm{pO2}$	$75-100 \mathrm{mmHg}$	$38-42 \mathrm{mmHg}$
O2 saturation	$96-100 \%$	$73-77 \%$
pCo 2	$35-45 \mathrm{mmHg}$	$44-48 \mathrm{mmHg}$
BE	-2 to +2	-2.5 to +2.5
Bicarbonate	$22-28 \mathrm{mEq} / \mathrm{L}$	$23-29 \mathrm{mEq} / \mathrm{L}$

DIFFUSION

- It is the random motion of molecules in all directions through the respiratory membrane and adjacent fluids.
- Diffusion of oxygen from the alveoli into the pulmonary blood and diffusion of carbon dioxide from the blood into the alveoli .
- DIFFUSION OF OXYGEN ACROSS THE ALVEOLAR WALL

DIFFUSION (CONT)

DIFFUSION BETWEEN ALVEOLI \&BLOOD

- Partial pressure of each gas in alveoli force molecules into solution
- Dissolved gases move from blood into alveoli proportional to their partial pressure

Rate of net diffusion is determined by difference of partial pressure

- If pp of gas in alveoli $>$ blood then gas moves into blood(oxygen)
- If pp of gas in blood $>$ alveoli then gas moves into alveoli (carbon dioxide)

Difference between Natural lung \& Membrane oxygenator

Natural Lung	Membrane oxygenator
More surface area that helps in more oxygenation	Less surface area
It has a surface area of $70 \mathrm{~m}^{2}$	It has a surface area of 0.5 to $4.0 \mathrm{~m}^{2}$
Oxygen transfer is $2000 \mathrm{ml} / \mathrm{min}$	Oxygen transfer is $400-600 \mathrm{ml} / \mathrm{min}$
Length $200 \mu \mathrm{~m}$	Length of blood path increase to get fully oxygenation so it is $2,50,000 \mu \mathrm{~m}$
Membrane thickness $0.5 \mu \mathrm{~m}$	Membrane thickness $150 \mu \mathrm{~m}$
Blood path width $8 \mu \mathrm{~m}$	Blood path width $200 \mu \mathrm{~m}$

SiE

THANK YOU

