

SNS COLLEGE OF ALLIED HEALTH SCIENCES

SNS Kalvi Nagar, Coimbatore - 35 Affiliated to Dr MGR Medical University, Chennai

DEPARTMENT OF CARDIO PULMONARY PERFUSION CARE TECHNOLOGY

COURSE NAME : PRINCIPLES OF PERFUSION TECHNOLOGY I

2nd YEAR

TOPIC: PRINCIPLES OF EXTRACORPOREAL GAS EXCHANGE

BLOOD GASES

- The interpretation of the information contained in blood gas results is a major responsibility of the perfusionist
- Maintenance of homeostasis, the body's ability to maintain its normal physiology is greatly influenced by the gas exchange that occurs at the cellular level
- The first organ affected by inadequate oxygenation is the brain, other organs are affected soon thereafter
- The exchange of gas between the blood and cells of the tissues is known as internal respiration
- External respiration is the exchange of carbon dioxide and oxygen that takes place in the lungs or HLM

HEMOGLOBIN OXYGEN EFFECT

- Hemoglobin is the major portion of the red blood cell.
- Hemoglobin is responsible for transporting oxygen to the organs and tissues of the body
- About 97% of the bloods oxygen is transported by the hemoglobin
- The average adult has a basilar oxygen consumption rate of about 250ml/min
- The heart has a basilar oxygen consumption rate of 1.3ml/100gm of tissue per min
- The brain has a basilar O_2 consumption rate of 3.5ml/100gm of tissue per min
- Temperature affects the oxygen consumption
- For every 7°c that the temperature is lowered, the metabolic rate is decreased by 50% thus lowering the oxygen consumption
- The oxygen-carrying capacity of hemoglobin is influenced by pH, PCO2, temperature, concentration of 2,3- diphosphoglycerate (2,3-DPG), and the specific type of hemoglobin.

P50

- P50 is a reflection of a certain effect on the hemoglobin affinity for oxygen.
- The enzyme is measured is 2,3-DPG (2,3-Diphosphoglycerate)
- The term can be described as the oxygen tension when 50% of the hemoglobin is saturated at 37°c, PCO₂ 40mmHg and PH of 7.40.
- Normal adult p50 (hemoglobin saturated at 50%) is 27mmHg under these conditions
- Decreased P50 indicates increased affinity of Hb for oxygen
- Increased P50 indicates decreased affinity of Hb for oxygen

Oxygen-Hemoglobin Dissociation Curve

Oxygen Partial Pressure (mm Hg)

MS. KRIPAP/LECTURER/SNSCAHS

5

O2 CALCULATIONS

A fully saturated gram of hemoglobin can carry 1.34 ml of oxygen

OXYGEN CARRYING CAPACITY

O2 capacity = 1.34* Hgb + .003* pO2

- This formula assumes 100% saturation.
- Dissolved oxygen in plasma is found by p02*.003
- It differs from the oxygen capacity in that it uses the actual O2 saturation

OXYGEN CONTENT

Content = 1.34* Hgb * % saturation (in decimal) + .003* pO2

OXYGEN SATURATION

O2 saturation = O2 content / O2 capacity

O2 CALCULATIONS (cont)

- ON BYPASS OXYGEN CONSUMPTION
 O2 consumption = aO2 content vO2 content * flow(l/m)*10
- ON BYPASS OXYGEN TRANSFER
 O2 transfer = (Art Ven sat in decimal form * 1.34 * Hgb * flow(ml/min)/ 100

PERCENT	DECIMAL
60%	0.6
80%	0.8
90%	0.9
100%	1

PARTIAL PRESSURE OF GASES

Atmospheric gases at sea level

GAS	% OF TOTAL	PARTIAL PRESSURE mmHg
OXYGEN	20.84	159
NITROGEN	78.62	597
CARBONDIOXIDE	.04	0.15
WATER	.5	3.85

• Partial pressure of alveolar air

GAS	% OF TOTAL	PARTIAL PRESSURE mmHg
OXYGEN	13.6	104
NITROGEN	74.9	569
CARBONDIOXIDE	5.3	40
WATER	6.2	47

BLOOD GASES

PARAMETERS	ARTERIAL BLOOD GAS	VENOUS BLOOD GAS
рН	7.35 – 7.45	7.35 – 7.39
p02	75 – 100 mmHg	38 – 42 mmHg
02 saturation	96 -100%	73 – 77 %
pCo2	35 – 45 mmHg	44 -48 mmHg
BE	-2 to +2	-2.5 to +2.5
Bicarbonate	22 – 28 mEq/L	23 – 29 mEq/L

DIFFUSION

- It is the random motion of molecules in all directions through the respiratory membrane and adjacent fluids.
- Diffusion of oxygen from the alveoli into the pulmonary blood and diffusion of carbon dioxide from the blood into the alveoli.
- DIFFUSION OF OXYGEN ACROSS THE ALVEOLAR WALL

DIFFUSION (CONT)

DIFFUSION BETWEEN ALVEOLI &BLOOD

- Partial pressure of each gas in alveoli force molecules into solution
- Dissolved gases move from blood into alveoli proportional to their partial pressure

Rate of net diffusion is determined by difference of partial pressure

- If pp of gas in alveoli > blood then gas moves into blood(oxygen)
- If pp of gas in blood > alveoli then gas moves into alveoli (carbon dioxide)

Difference between Natural lung & Membrane oxygenator

Natural Lung	Membrane oxygenator
More surface area that helps in more oxygenation	Less surface area
It has a surface area of 70m ²	It has a surface area of 0.5 to 4.0m ²
Oxygen transfer is 2000 ml/min	Oxygen transfer is 400-600ml/min
Length 200µm	Length of blood path increase to get fully oxygenation so it is $2,50,000\mu m$
Membrane thickness 0.5µm	Membrane thickness 150µm
Blood path width 8µm	Blood path width 200µm

THANK YOU