

SNS COLLEGE OF ALLIED HEALTH SCIENCES SNS Kalvi Nagar, Coimbatore - 35 Affiliated to Dr MGR Medical University, Chennai

DEPARTMENT OF CARDIO PULMONARY PERFUSION CARE TECHNOLOGY

COURSE NAME : Pharmacology Pathology and Clinical Microbiology II nd YEAR **TOPIC : ACID BASE BALANCE**

Acid-Base Balance

Acid-Base Basics

- Balance depends on regulation of free hydrogen ions
- Concentration of hydrogen ions is measured in pH
- Arterial blood gases are the major diagnostic tool for evaluating acid-base balance

•

pН

Arterial Blood Gases 7.35 - 7.45

• PaCO2 35 - 45 mmHg

• HCO3 22-26 mEq/L

Acidosis

• pH < 7.35

• Caused by accumulation of acids or by a loss of bases

Alkalosis

• pH > 7.45

Occurs when bases accumulate or acids are lost

Regulatory Systems

Three systems come into play when pH rises or falls

- Chemical buffers
- Respiratory system
- Kidneys

Chemical Buffers

- Immediate acting
- Combine with offending acid or base to neutralize harmful effects until another system takes over
- tubules

Bicarb buffer - mainly responsible for buffering blood and interstitial fluid • Phosphate buffer effective in renal

• Protein buffers - most plentiful - hemoglobin

Respiratory System

- Lungs regulate blood levels of CO2
- CO2 + H2O = Carbonic acid
- High CO2 = slower breathing (hold on to carbonic acid and lower pH)
- Low CO2 = faster breathing (blow off carbonic acid and raise pH)
- Twice as effective as chemical buffers, but effects are temporary

Kidneys

- Reabsorb or excrete excess acids or bases into urine
- Produce bicarbonate

- Adjustments by the kidneys take hours to days to accomplish Bicarbonate levels and pH levels increase or decrease together

Arterial Blood Gases (ABG)

- Uses blood from an arterial puncture
- Three test results relate to acid-base balance
 - pH
 - PaCO2
 - HCO3

re se balance

Interpreting ABGs

- Step 1 check the pH
- Step 2 What is the CO2?
- Step 3 Watch the bicarb
- Step 4 Look for compensation
- Step 5 What is the PaO2 and SaO2?

Step 1 - Check the pH

• pH < 7.35 = acidosis

• pH > 7.45 = alkalosis

• Move on to Step 2

Step 2 - What is the CO2?

- PaCO2 gives info about the respiratory component of acid-base balance
- If abnormal, does the change correspond with change in pH?
 - High pH expects low PaCO2 (hypocapnia)
 - Low pH expects high PaCO2 (hypercapnia)

Step 3 – Watch the Bicarb

- Provides info regarding metabolic aspect of acid-base balance
- If pH is high, bicarb expected to be high (metabolic alkalosis)
- If pH is low, bicarb expected to be low (metabolic acidosis)

Step 4 – Look for Compensation

- If a change is seen in **BOTH** PaCO2 <u>and</u> bicarbonate, the body is trying to compensate
- Compensation occurs as opposites, (Example: for metabolic acidosis, compensation shows respiratory alkalosis)

ompensate (Example: for hows

Step 5 – What is the PaO2 and SaO2

- PaO2 reflects ability to pickup O2 from lungs
- SaO2 less than 95% is inadequate oxygenation
- Low PaO2 indicates hypoxemia

om lungs exygenation

Acid-Base Imbalances

- Respiratory Acidosis
- Respiratory Alkalosis
- Metabolic Acidosis
- Metabolic Alkalosis

Respiratory Acidosis

- Any compromise in breathing can result in respiratory acidosis
- Hypoventilation \Rightarrow carbon dioxide buildup and drop in pH
- Can result from neuromuscular trouble, depression of the brain's respiratory center, lung disease or airway obstruction

Clients At Risk

- Post op abdominal surgery
- Mechanical ventilation
- Analgesics or sedation

What Do You See?

- Apprehension, restlessness
- Confusion, tremors
- Decreased DTRs
- Diaphoresis
- Dyspnea, tachycardia
- N/V, warm flushed skin

ABG Results

 Uncompensated 	• Compe
– pH < 7.35	— pH N
– PaCO2 >45	– PaCO
– HCO3 Normal	– HCO3

ensated Normal

- 02 >45
-)3 > 26

What Do We Do?

- Correct underlying cause
- Bronchodilators
- Supplemental oxygen
- Treat hyperkalemia
- Antibiotics for infection
- Chest PT to remove secretions
- Remove foreign body obstruction

tions truction

Respiratory Alkalosis

Most commonly results from hyperventilation caused by pain, salicylate poisoning, use of nicotine or aminophylline, hypermetabolic states or acute hypoxia (overstimulates the respiratory center)

What Do You See?

- Anxiety, restlessness
- Diaphoresis
- Dyspnea (rate and depth)
- EKG changes
- Hyperreflexia, paresthesias
- Tachycardia
- Tetany

ABG Results

 Uncompensated 	• Compe
– pH > 7.45	— pH N
– PaCO2 < 35	– PaCO
– HCO3 Normal	– HCO3

- ensated lormal
- 02 < 35
- 3 < 22

What Do We Do?

- Correct underlying disorder
- Oxygen therapy for hypoxemia
- Sedatives or antianxiety agents
- Paper bag breathing for hyperventilation

Metabolic Acidosis

- Characterized by gain of acid or loss of bicarb
- Associated with ketone bodies
 - Diabetes mellitus, alcoholism, starvation, hyperthyroidism
- Other causes
 - Lactic acidosis secondary to shock, heart failure, pulmonary disease, hepatic disease, seizures, strenuous exercise

What Do You See?

- Confusion, dull headache
- Decreased DTRs
- S/S hyperkalemia (abdominal cramps, diarrhea, muscle weakness, EKG changes)
- Hypotension, Kussmaul's respirations
- Lethargy, warm & dry skin

ABG Results

• Uncompe	nsated •	Compe
– pH < 7.35	5	— pH N
– PaCO2 N	ormal	– PaCO
– HCO3 < 2	22	– HCO3

- ensated lormal
-)2 < 35
- 3 < 22

What Do We Do?

- Regular insulin to reverse DKA
- IV bicarb to correct acidosis
- Fluid replacement
- Dialysis for drug toxicity
- Antidiarrheals

Metabolic Alkalosis

- Commonly associated with hypokalemia from diuretic use, hypochloremia and hypocalcemia
- Also caused by excessive vomiting, NG suction, Cushing's disease, kidney disease or drugs containing baking soda

What Do You See?

✓ Anorexia ✓ Apathy ✓ Confusion ✓ Cyanosis ✓ Hypotension ✓ Loss of reflexes

- ✓ Nausea
- ✓ Paresthesia
- ✓ Polyuria
- ✓ Vomiting
- ✓ Weakness

✓ Muscle twitching

ABG Results

 Uncompensated 	• Compe
– pH > 7.45	— pH N
– PaCO2 Normal	– PaCO
– HCO3 >26	– HCO3

ensated lormal

- 02 > 45
- 3 > 26

What Do We Do?

V IV ammonium chloride

D/C thiazide diuretics and NG suctioning

Antiemetics

IV Therapy

Crystalloids – volume expander

- Isotonic (D5W, 0.9%) NaCl or Lactated Ringers)
- Hypotonic (0.45%) NaCl)
- Hypertonic (D5/0.9% NaCl, D5/0.45% NaCl)

- - into the
 - bloodstream)
 - Albumin
 - Plasma protein
 - Dextran

Colloids – plasma expander (draw fluid

Total Parenteral Nutrition

- Highly concentrated
- Hypertonic solution
- Used for clients with high caloric and nutritional needs
- Solution contains electrolytes, vitamins, acetate, micronutrients and amino acids
- Lipid emulsions given in addition

THANK YOU

