ECG - BASICS HOW TO INTERPRET NORMAL ECG

Dr A Eswaran MD, DNB(cardio), FSCAI, FESC,
Consultant Interventional Cardiologist
Kumaran Medical center - Coimbatore

CONDUCTION SYSTEM

- Sinoatrial Node (SA)
- Primary pacemaker
- Intrinsic rate 60100/min
- Located in Rt. Atrium
- Supplied by sympathetic and parasympathetic nerve fibers
- Blood from RCA-60\% of people

CONDUCTION SYSTEM

- Atrioventricular Junction
- Internodal pathways merge
- AV Node
- Non-branching portion of the Bundle of His

CONDUCTION SYSTEM

- AV Node
- Supplied by RCA - 85\%-90\% of people
- Left circumflex artery in rest of people
- Delay in conduction due to smaller fibers

CONDUCTION SYSTEM

- Bundle of His
- Located in upper portion of interventricular septum
- Intrinsic rate $40-60$ /min
- Blood from LAD and Posterior Descending
- Less vulnerable to ischemia

CONDUCTION SYSTEM

$>$ Right \& Left Bundle Branches
$>$ LBB - Left Bundle Branch
$>$ Anterior Fascicle
$>$ Anterior portion left ventricle
$>$ Posterior Fascicle
$>$ Posterior portions of left ventricle
$>$ RBB - Right Bundle Branch
$>$ Right Ventricle

CONDUCTION SYSTEM

- Purkinje Fibers
- Intrinsic pacemaker rate 20-40/min
- Impulse spreads from endocardium to epicardium

THE ECG

ECG

- Records electrical voltage of heart cells
- Orientation of heart
- Conduction disturbances
- Electrical effects of medications and electrolytes
- Cardiac muscle mass
- Ischemia / Infarction

- Leads
- Tracing of electrical activity between 2 electrodes
- Records the Average current flow at any specific time in any specific portion of time

Impulses traveling away from a positive electrode and/or toward a negative electrode will produce downward
deflections.

Impulses traveling perpendicular to the positive electrode may produce a biphasic waveform (one that has both a positive and negative deflection)

Impulses traveling toward a positive electrode produce upward deflections

CARDIAC CYCLE - ECG

1. Atrial depolarization, initiated by the SA node, causes the P wave
2. With atrial
3.Ventricular depolarization complete, depolarization begins the impulse is delayed at apex, causing the at the AV node

QRS complex. Atrial repolarization occurs
4. Ventricular depolarization is complete
5. Ventricular
repolarization
begins at apex, causing the T wave
6.Ventricular repolarization is complete

$$
12 \text { LEADS - } 12 \text { CAMERAS }
$$

12 CAMERAS - IN ACTION

ECG

- Types of leads
- Limb Lead (I, II, III)
- Augmented (magnified) Limb Leads (aVR, aVL, aVF)
- Chest (Precordial) Leads (V1,V2,V3,V4,V5,V6)
- Each lead has Positive electrode

ECG

- Each lead 'sees' heart as determined by 2 factors
- 1. Dominance of left ventricle
- 2. Position of Positive electrode on body

Chest (V) Leads

ECG

- Lead I
- Negative electrode
- Right arm
- Positive electrode
- Left arm

ECG

- Lead II
- Negative Electrode
- Right Arm
- Positive Electrode
- Left Leg

ECG

- Lead III
- Negative Lead
- Left Arm
- Positive Lead
- Left Leg

STANDARD LIMB LEADS

ALL LIMB LEADS

PRECORDIAL LEADS

Adapted from: www.numed.co.uk/electrodepl.html

PRECORDIAL LEADS

ANATOMIC GROUPS

 (SUMMARY)| I |
| :---: | :---: | :---: | :---: |
| Lateral |\quad| aVR |
| :---: |
| None |\quad| V_{1} |
| :---: |
| Septal |\quad| V_{4} |
| :---: |
| Anterior |

LEAD PLACEMENT FOR A 3 LEAD ECG

 -Remember the pneumonic WHITE RIGHT RIBSBLACK LEFT OVER

LEAD PLACEMENT FOR FIVE LEAD

-WHITE RIGHT, RED RIBS, BLACK LEFTOVER, PLUS GREEN RIGHT RIB AND BROWN MID CHEST

The lead you are looking at depends on the charge of the leads in relationship to their position in the triangle. The following picture shows how the ECG machine changes the charges to show different leads. But the physical position of the white red and black leads does not change.

KNOW THY PAPER

Graph Paper
> Small boxes
$>1 \mathrm{~mm}$ wide; 1 mm high

- Horizontal axis
$>$ Time in seconds
>1 mm box represents 0.04 seconds
$>$ ECG paper speed is $25 \mathrm{~mm} / \mathrm{sec}$ ond
$>$ One large box is 5 small boxes and $=.20$ seconds (.04sec x5)

VERTICAL	1 Small Square $=1 \mathrm{~mm}(0.1 \mathrm{mV})$
AXIS	1 Large Square $=5 \mathrm{~mm}(0.5 \mathrm{mV})$
	2 Large Squares $=1 \mathrm{mV}$

[^0]

ECG

- Waveforms
- Movement from baseline
- Positive (upward)
- Negative (downward)
- Isoelectric -along baseline
- Biphasic - Both upward and downward

ECG - WAVES AND INTERVALS

- P Wave
- First waveform
- Impulse begins in SA Node in Right Atrium
- Downslope of P wave -is stimulation of left atrium
- 2.5 mm in height (max)
- 0.11 sec. duration (max)
- Positive in Lead II

A normal ECG waveform

- QRS Complex
- Electrical impulse through ventricules
- Larger than P wave due to larger muscle mass of ventricles
- Follows P wave
- Made up of a
- Q wave
- R wave
- S wave

ECG

- Q wave
- First negative deflection following P wave
- Represents depolarization of the interventricular septum activated from left to right

- S wave
- Negative waveform following the R wave
- Normal duration of QRS
- $0.06 \mathrm{~mm}-0.10 \mathrm{~mm}$
- Not all QRS Complexes have a Q, R and S

ECG

- T wave
- Represents ventricular repolarization
- Absolute refractory period present during beginning of T wave
- Relative refractory period at peak
- Usually 0.5 mm or more in height
- Slightly rounded

- U wave
- Small waveform
- Follows T wave
- Less than 1.5 mm in amplitude

ECG

- J Point
- Point where the QRS complex and STsegment meet

- PR Interval
$>$ Measurement where P wave leaves baseline to beginning of QRS complex
$>0.12-.20 \mathrm{sec}$.
- QRS Interval
$>$ Measurement from beginning of the \mathbf{Q} wave until the end of the S wave.
-0.06-. 12 sec .

?

- QT interval
- Begins at isoelectric line from end of S wave to the beginning of the T wave -0.44 sec .
- Represents total ventricular activity
- Measured from beginning of QRS complex to end of T wave.

ECG ANALYSIS

D Determine Rate
Normal? Fast? Slow?
$>$ Atrial Rate? Ventricular Rate?
$>$ Is it Regular? ($R-R$ and P-P intervals)
$>$ Regularly irregular (pattern) or irregularly irregular?
$>$ Are P-waves Present?
Are there p waves before every QRS?
$>$ Is the P-P interval constant?
$>$ Is The P-R interval normal?
$>$ Is the QRS normal?
$>$ Is the morphology of the QRS the same?

ECG ANALYSIS

RATE

- Rule of 300 / 1500
- 6 / 10 Second Rule

RULE OF 300

Take the number of "big boxes" between neighboring QRS complexes, and divide this into 300. The result will be approximately equal to the rate

Although fast, this method only works for regular rhythms.

WHAT IS THE HEART RATE?

www.uptodate.com
$(300 / 6)=50 \mathrm{bpm}$

WHAT IS THE HEART RATE?

$$
(300 / \sim 4)=\sim 75 \mathrm{bpm}
$$

\qquad

WHAT IS THE HEART RATE?

$$
(300 / 1.5)=200 \text { bpm }
$$

THE RULE OF 300

It may be easiest to memorize the following table:

\# of big boxes	Rate
1	300
2	150
3	100
4	75
5	60
6	50

End
point
Figure 2-5 The 1500 method.

10 SECOND RULE

As most EKGs record 10 seconds of rhythm per page, one can simply count the number of beats present on the EKG and multiply by 6 to get the number of beats per 60 seconds.

This method works well for irregular rhythms.

WHAT IS THE HEART RATE?

The Alan E. Lindsay EGG Leemming Gonter, httpr/imedotatmed.utahredutkw/ecg/

$33 \times 6=198 \mathrm{bpm}$

Using the 6 -second $\times \mathbf{1 0}$ method

- Multiply by 10 the number of QRS complexes (for the ventricular rate) and the P waves (for the atria rate) found in a 6 -second portion of ECG tracing. The rate in the ECG below is approximately 70 beats per minute.

tuaturasha
\square

SINUS ARRHYTHMIA
敖

RATE
 SUMMARY

ECG - RHYTHM

- Normal Sinus Rhythm
- Electrical activity activity starts in SA node
- AV Junction
- Bundle Branches
- Ventricles
- Depolarization of atria and ventricles
- Rate: 60-100/Regular
- PR interval / QRS duration
 normal

Normal Sinus Rhythm

Heart Rate	Rhythm	P Wave	PR interval (in seconds)	QRS (in seconds)
$60-100 \mathrm{bpm}$	Regular	Before each QRS, identical	.12 to .20	$<.12$

ECG - AXIS

- The Quadrant Approach
- The Equiphasic Approach

DETERMINING THE AXIS

Predominantly Positive

Predominantly Negative

Equiphasic

THE QRS AXIS

By near-consensus, the normal QRS axis is defined as ranging from -30° to $+90^{\circ}$.
-30° to -90° is referred to as a left axis deviation (LAD)
$+90^{\circ}$ to $+180^{\circ}$ is referred to as
 a right axis deviation (RAD)

THE QUADRANT APPROACH

1. Examine the QRS complex in leads I and aVF to determine if they are predominantly positive or predominantly negative. The combination should place the axis into one of the 4 quadrants below.

	Lead aVF	
	Positive	Negative
Positive	Normal Axis	LAD
Negative	RAD	Indeterminate Axis

THE QUADRANT APPROACH

2. In the event that LAD is present, examine lead II to determine if this deviation is pathologic. If the QRS in II is predominantly positive, the LAD is non-pathologic (in other words, the axis is normal). If it is predominantly negative, it is pathologic.

	Lead aVF	
	Positive	Negative
Positive	Normal Axis	LAD
Negative	RAD	Indeterminate Axis

QUADRANT APPROACH: EXAMPLE 1

The Alan E. Lindsay ECG Learning Center http://medstat.med.utah. edu/kw/ecg/

Negative in I, positive in aVF \rightarrow RAD

QUADRANT APPROACH: EXAMPLE 2

The Alan E. Lindsay ECG Learning Center http://medstat.med.utah. edu/kw/ecg/

Positive in I, negative in $\mathrm{aVF} \Rightarrow \rightarrow$ Predomintantiy positive in II \rightarrow Normal Axis (non-pathologic LAD)

THE EQUIPHASIC APPROACH

1. Determine which lead contains the most equiphasic QRS complex. The fact that the QRS complex in this lead is equally positive and negative indicates that the net electrical vector (i.e. overall QRS axis) is perpendicular to the axis of this particular lead.
2. Examine the QRS complex in whichever lead lies 90° away from the lead identified in step 1. If the QRS complex in this second lead is predominantly positive, than the axis of this lead is approximately the same as the net QRS axis. If the QRS complex is predominantly negative, than the net QRS axis lies 180° from the axis of this lead.

EQUIPHASIC APPROACH: EXAMPLE 1

RHYTHM STRJP: II $25 \mathrm{~mm}^{2} / \mathrm{sec} ; 1 \mathrm{~cm} / \mathrm{mV}$

The Alan E. Lindsay-EGG Leaming Gonter, httpor/mmodstat.med.titahreelufkw/ecg/
Equiphasic in aVF \rightarrow Predominantly positive in I \rightarrow QRS axis $\approx 0^{\circ}$

EQUIPHASIC APPROACH: EXAMPLE 2

The Alan E. Lindsay ECG Learning Center ; http://medstat.med.utah.edu/kw/ecg/
Equiphasic in II $\boldsymbol{\rightarrow}$ Predominantly negative in aVL $\boldsymbol{\rightarrow}$ QRS axis $\approx+150^{\circ}$

SYSTEMATIC APPROACH

- Rate
- Rhythm
- Axis
- Wave / Intervals / Segments

P mitrale, P Pulmonale, Inverted / Polymorphic
Flutter/ Fibrillatory / Absent

2.5×2.5, II

Rate:100/min P:Absent,Fibrillating baseline QRS: Normal
Rhythm : Irregulatily-ineGGitai SI/Others: Normal
ATRIAL FIBRILLATION

Only some of the atrial impulses are conducted through the AV node.

Not conducted

Conducted

NORMAL

SHORT - WPW Syndrome

- L-G-L Syndrome

PROLONGED - $1^{\text {st }}$ AV block
VARIABLE $-2^{\text {nd }} / 3^{\text {rd }}$ AV block

FIRST DEGREE AV BLOCK IXED PR PROLONGATION

ECOND DEGREE AV BLOCK - WENKEBACH - MOBITZ TYPE 1 SEQUENTIAL $\uparrow(W I D E N I N G)$ PR $\rightarrow 1$ DROPPED

Irijuliza
originates
in SA
node-
node

Impulse is not carried through the AV node, resulting in a dropped QRS complex

$2^{\text {ND }}$ HEART BLOCK - MOBITZ TYPE 2 TYPES P - P-QRS (NORMAL PR), P × QRS

COMPLETE / 3RD DEGREE HEART BLOCK COMPLETELY BLOCKED - ESCAPE RHYTHM

- Depolarization - Ventricles
- $\leq 120 \mathrm{~ms}$
- Three small squares
- Cardiac axis

WIDE QRS

- Origin of depolarisation from ventricle
- Bundle branch block

TALL ARS

Ventricular hypertrophy
 II UL
„HMWMM WMMMMAMMMMWYW

Rate : 250/min _P:Absent QRS: Aide__
Rhythm : Regular

Monomorphic VI
Pattern of spread of each beat ('activation sequence') is the same
Scar-related

Torsades de pointes

Activation sequence differs randomly between beats
Continually changing axis (end QPS cizo).
Genetic or Acquired channelopathies.

ST SEGMENT

Rate: 90/min P/PR: Normal QRS: Normal
Rhythm : Regular ST: Elevation V2-V6, Reciprocal II,III, aVF Acute Myocardial Ischemia - Anterolateral

Rate : 70/min
P: Normal
QRS: Normal
Rhythm : Regular_PR: Normal_ ST: ST elevation III,III,aVF
Myocardial Ischemia - Inferior Wall

A Galvanometrische registratie van het menschelijk electrocardiogram

300\%
Dr. W. EINTHOVEN,
Hookthoranar to Ielden.

Capillary electrometer recording
"Corrected" tracing

The w, tratios.

Mram in masmon mo
M-thankyousplp-thankyous/mp-tha
 pouiph-chank yourph-chank yourd

[^0]: HORIZONTAL
 AXIS

