

SNS COLLEGE OF ALLIED HEALTH SCIENCES

SNS Kalvi Nagar, Coimbatore - 35 Affiliated to Dr MGR Medical University, Chennai

DEPARTMENT OF CARDIO PULMONARY PERFUSION CARE TECHNOLOGY

COURSE NAME : PRINCIPLES OF PERFUSION TECHNOLOGY I

II YEAR

TOPIC: APPROACH TO PEDIATRIC PATIENTS

PEDIATRIC PERFUSION

- •The procedures in neonates and infants are likely to involve much greater differences from adult's procedures.
- •The specialized paediatric perfusionist should have the advanced knowledge of all the various surgical interventions
- •The various types oxygenators and their different sizes, the appropriate size of the circuit for each patient, characteristics and numbers of cannulas for different procedures.

DIFFERENCES IN ADULT & PEDIATRIC CASES

Certain anatomic features such as,

- •The presence of **large aorto-pulmonary collateral** vessels or an interrupted aortic arch
- •Immature organs (**liver** immature leads to vit k deficiency that causes decrease clotting factors production)
- •The patients with liver immature give **high flows** to maintain adequate metabolic needs.
- •Temperature management (temp decrease then flow can be decrease)
- •**Profound cooling** provides the surgeon with the opportunity to **remove the cannulas** from the patient and perform a precise repair in an operative field unencumbered by blood, cannulas, or other apparatus related to CPB.
- •6 months of gestation to 6 months after birth is the period for the development of the cortical structure of the **brain** that **affects the perceptual process.**

- •Immature brain tolerates O_2 deprivation better than the mature brain so, DHCA is tolerated.
- •The **lungs** are also immature at birth, and lung development proceeds up to about 8 years of age, lungs are fragile so, it leads to **increased pulmonary edema and hypertension.**
- •The **kidneys** of neonates and infants have a high vascular resistance with blood flow decreased sodium reabsorption and excretion, concentrating and diluting mechanisms, and acid-base balance
- •The immune system of the neonate is immature. Complement generation is low
- •Immature **myocardium** with 30-60 % less contractile protein.
- Fewer matured mitochondria and lower oxidative capacity
- •Incomplete **sympathetic and parasympathetic** innervations depending more on circulating catecholamine.
- •Less compliant ventricles, less tolerant to distension.

Table 35: Differences Between Adult and Pediatric CPB				
neter	Adult patient		Pediatric patient	
Estimated blood volume	Male	70 ml/kg	>10 Kg	85 ml/kg
	female	60 ml/kg	10-20 Kg 21-45 kg	80ml/kg 75 ml/kg
Dilution effects on blood volume	25 - 33%		50 - 200%	
Oxygen consumption	2 - 3 ml/kg/min		6 - 8 ml/kg/min	
Full CPB flow at 37°C	50 – 75 ml/kg/min		<3 Kg 3-7 Kg 7-10 Kg 10-30Kg 30-50Kg	150-200 120-190 100-170 80-120 75-100
Minimum CPB temperature	Commonly 32 - 37°C		Commonly 18 - 28°C	
Temperatures gradient (between blood and water)	10-12°C		8°C	
Perfusion pressures	50 – 90 mmHg		20 – 70 mmHg	
Acid-base management	Mainly Alpha-stat		Alpha-stat and/or pH-stat	
Measured PaCO2 differences	35 – 45 n	nmHg	20 – 60 mmHg	