

SNS COLLEGE OF ALLIED HEALTH SCIENCES SNS Kalvi Nagar, Coimbatore - 35 Affiliated to Dr MGR Medical University, Chennai

DEPARTMENT OF CARDIO PULMONARY PERFUSION CARE TECHNOLOGY

COURSE NAME : PRINCIPLES OF PERFUSION TECHNOLOGY I II nd YEAR **TOPIC : PRINCIPLES OF EXTRACORPOREAL GAS EXCHANGE**

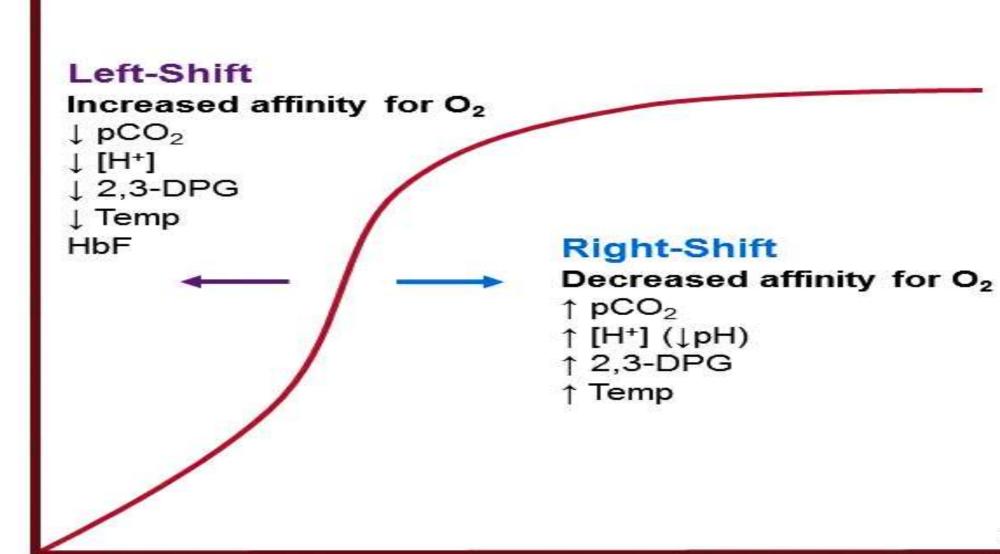
BLOOD GASES

- The interpretation of the information contained in blood gas results is a major responsibility of the perfusionist
- Maintenance of homeostasis , the body's ability to maintain its normal physiology is greatly influenced by the gas exchange that occurs at the cellular level
- The first organ affected by inadequate oxygenation is the brain, other organs are affected soon thereafter
- •The exchange of gas between the blood and cells of the tissues is known as internal respiration
- External respiration is the exchange of carbon dioxide and oxygen that takes place in the lungs or HLM

HEMOGLOBIN OXYGEN EFFECT

- Hemoglobin is the major portion of the red blood cell. ullet
- Hemoglobin is responsible for transporting oxygen to the organs and tissues of the body About 97% of the bloods oxygen is transported by the hemoglobin
- The average adult has a basilar oxygen consumption rate of about 250ml/min
- The heart has a basilar oxygen consumption rate of 1.3ml/100gm of tissue per min
- The brain has a basilar o2 consumption rate of 3.5ml/100gm of tissue per min
- Temperature affects the oxygen consumption
- For every 7[°]c that the temperature is lowered , the metabolic rate is decreased by 50% thus lowering the oxygen consumption

P50


- P50 is a reflection of a certain effect on the hemoglobin affinity for oxygen.
- The enzyme is measured is 2,3 DPG
- The term can be described as the oxygen tension when 50% of the hemoglobin is saturated at 37[°] c , Pco2 40mmHg and PH of 7.40.
- Normal adult p50 (hemoglobin saturated at 50%) is 27mmHg under these conditions
- Decreased P50 indicates **increased affinity of Hb for oxygen** ullet
- Increased P50 indicates decreased affinity of Hb for oxygen

Oxygen Saturation of Hemoglobin (%)

Oxygen-Hemoglobin Dissociation Curve

Oxygen Partial Pressure (mm Hg)

Lineage ©

Moises Dominguez

O2 CALCULATIONS

- A fully saturated gram of hemoglobin can carry 1.34 ml of oxygen
- **OXYGEN CARRYING CAPACITY**

O2 capacity =1.34* Hgb + .003 * pO2

- This formula assumes 100% saturation. Dissolved oxygen in plasma is found by pO2*.003
- It differs from the oxygen capacity in that it uses the actual O2 saturation
- **OXYGEN CONTENT**

Content = 1.34^* Hgb * % saturation (in decimal) + .003 * pO2

OXYGEN SATURATION

O2 saturation = O2 content / O2 capacity

- ON BYPASS OXYGEN CONSUMPTION O2 consumption = aO2 content – vO2 content * flow(l/m)*10
- ON BYPASS OXYGEN TRANSFER ullet

O2 transfer = (Art – Ven sat in decimal form * 1.34 * Hgb * flow(ml/min)/ 100

PERCENT	DECIMAL
60%	0.6
80%	0.8
90%	0.9
100%	1

PARTIAL PRESSURE OF GASES

• Atmospheric gases at sea level

GAS	% OF TOTAL	PARTI
OXYGEN	20.84	
NITROGEN	78.62	
CARBONDIOXIDE	.04	
WATER	.5	

IAL PRESSURE mmHg 159 597 0.15 3.85

• Partial pressure of alveolar air

GAS	%OF TOTAL	PARTIA
OXYGEN	13.6	
NITROGEN	74.9	
CARBONDIOXIDE	5.3	
WATER	6.2	

IAL PRESSURE mmHg

BLOOD GASES

PARAMETERS	ARTERIAL BLOOD GAS	
рН	7.35 – 7.45	
p02	75 – 100 mmHg	
02 saturation	96 -100%	
pCo2	35 – 45 mmHg	
BE	-2 to +2	
Bicarbonate	22 – 28 mEq/L	

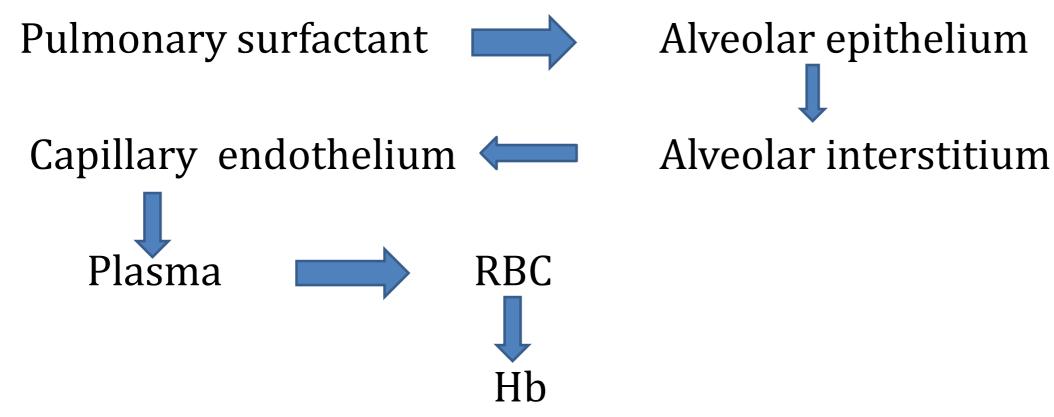
VENOUS BLOOD GAS

7.35 – 7.39

38 – 42 mmHg

73 – 77 %

44 - 48 mmHg


-2.5 to +2.5

23 – 29 mEq/L

DIFFUSION

- It is the random motion of molecules in all directions through the respiratory membrane and adjacent fluids.
- Diffusion of oxygen from the alveoli into the pulmonary blood and diffusion of carbon ulletdioxide from the blood into the alveoli.
- **DIFFUSION OF OXYGEN ACROSS THE ALVEOLAR WALL** \bullet

DIFFUSION BETWEEN ALVEOLI & BLOOD

- Partial pressure of each gas in alveoli force molecules into solution
- Dissolved gases move from blood into alveoli proportional to their partial pressure

Rate of net diffusion is determined by difference of partial pressure

- If pp of gas in alveoli > blood then gas moves into blood(oxygen)
- if pp of gas in blood > alveoli then gas moves into alveoli (carbon dioxide)

to solution al to their partial pressure