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141 PERIODIC MOTION

1. What is periodic motion ? Give some of its examples.

Periodic motion. Any motion that repeats itself over
ad over again at regular intervals of time is called periodic
or harmonic motion. The smallest interval of time after
which the motion is repeated is called its time period.

The time period is denoted by T and its SI unit is
second.

Examples of periodic motion :

(i) The motion of any planet around the sun in an
elliptical orbit is periodic. The period of
revolution of Mercury is 87.97 days.

() The motion of the moon around the earth is
periodic. Its time period is 27.3 days.

(iil) The motion of Halley’s comet around the sun s
Periodic. It appears on the earth after every
76 years.

() The motion of the hands of a clock is periodic.

(¥) The heart beats of a human being are periodic.
The periodic time is about 0.8 second for a
normal person.

142 OSCILLATORY OR HARMONIC MOTION

2 What g oscillatory motion ? Give some of its
Xamples,

" OSCillatory motion. If a body moves back and forlt’h
Peatedly gy its mean position, its motion 15 said to be
osfl"ufo

X ; . otion
"y or vibratory or harmonic motion. Sucham

Tepeats itself over and over again about a mean position
such that it remains confined within well defined limits

(known as extreme positions) on either side of the
mean position.

Examples of oscillatory motion :

(i) The swinging motion of the pendulum of a

wall clock.

(i) The oscillations of a mass suspended from a
spring.

(iii) The motion of the piston of an automobile
engine.

(iv) The vibrations of the string of a guitar.

(v) When a freely suspended bar magnet is dis-
placed from its equilibrium position along
north- south line and released, it executes
oscillatory motion.

14.3 PERIODIC MOTION VS.
OSCILLATORY MOTION

3. Every oscillatory motion is necessarily periodic but
every periodic motion need not be oscillatory. Justify.

Distinction between periodic and  oscillatory
motions. Every oscillatory motion is necessarily
periodic because it is repeated at regular intervals of
time. In addition, it is bounded .about one mean
position. But every periodic motion need not be
oscillatory. For example, .the earth cor_ngletes one
revolution around the sun in 1 year b_u.t 1t is not a to
and fro motion about any mean position. Hence its
motion is periodic but not oscillatory.

(14.1)
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14.5 PERIODIC, HARMONIC AND
NON-HARMONIC FUNCTIONs

5. Distinguish between periodic, harmonj,
non-harmonic functions. Give examples of each. :

Periodic, harmonic and non-harmonjc ﬁmﬁons
Any function that repeats itself at reqular interygls Ofifs.

argument is called a periodic function. The following Sine
and cosine functions are periodic with period T

[

2mt
f(#)=sin of =sin Z-*
T
2mt
and g (t) = cos ot = cos —;t;—

Figure 14.1. shows how these functions vary wit

time f.
+ 1
T /\ /\ e
S 0 I T T T
< T/Z\/T 3T/2 r=
_1_
(a)
+1
7 /
59 | T T | ZT f
T 3T/
_1_
(b)
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OSCILLATIONS 14.3
n. The periodic functions which can be r. .
i betfveir cosinrz’ curve are called harmonic fuexfgis ented Example 1. Onan average a human heart 15 found to beat
py @ SN iONS. 75 times in a minute. Calculate its beat frequency and

All harmoyic functions are necessarily periodic but all ~ period. [NCERT]
riodic finctions are not harmonic. The periodic functions

g . . Solution.
' pich cannot be represen ted by single sine or cosine function tion. Beat frequency of the hearl,

e called non-harmonic functions. Fig. 142 shows v No.of beats _ 75
come eriodic functions which repeat themselves in a Time taken 1 min
.4 T but are not harmonic.
penod - 7> _12551=125Hz
60 s
F(H
( Beat period, T =1 = L T = 0.8s.
v 125s"
0 T 2T 3T ATt Example 2. Which of the following functions of time
b represent (a) periodic and (b) non-periodic motion ? Give t.he
period for each case of periodic motion. [w is any posttive
constant]. [NCERT]

\/ ; to (i) sinwt + cos ot (i) sin wt + cos 20t + sindot
(iii) e (iv) log (oot).

Solution. (i) Here x (t)=sin wt + cos ot

A
F(t)/"\ L
= JZ_[sin ot cosE+cos of sin ‘—]
4 4
t
U U =2 sin (ot + 1/4)

Y

Moreover,
Fig. 14.2 Some non-harmonic periodic functions. x(t - 2_1:) _ 2 sin[o(t + 27/ o)+ ©/4]
Any non-harmonic periodic function can be @ .
constructed from two or more harmonic functions. =2 sin (mt +2m+ E)
One such function is : F (t) =4, sin ot + a, sin2 ot &
It can be easily checked that the functions tan wt =2 sin(mt + E)=x (1)
and cot wt are periodic with period T = 1/ @ while sec ot 4
and cosec wt are periodic with period T =27/ Thus Hence sin of + cos ot is a periodic function with
- time period equal to 271/ .
kan {“)(t il :o)} = tan (ot + m) = tan of (if) Here x (t)=sin ot + cos 2ot + sin 4ot
sin ot is a periodic function with period
sec{m(u%)}=sec(mt+2n)=secwt =2n/w=T

cos 2wt is a periodic function with period
But such functions take values between zero and —2n/20=1/ T
infinity. So these functions cannot be used to represent . . - T . o=1/0=T/2
displacement functions in periodic motions because sin 4ot is a periodic function with period
displacement always takes a finite value in any =2n/40=n/20=T/4

h rel . -
physical situation. Clearly, the entire function x () repeats after a

Examples Based on ' minimum time T =27/ o. Hence the given function is
periodic.

Periodic and Harmonic Functions

Concepts Used
1. A function which can be represented by a single
sine or cosine function is a harmonic function
otherwise non-harmonic.

2. A periodic function can be expressed as the sum o)
of sine and cosine functions of different time with time. As t — =, log (wt) — «. It never repeats its

(itf) The function e~ ! decreases monotonically to
zero as t — . It is an exponential function with a
negative exponent of ¢ where ¢=2.71828. It never
repeats its value. So it is non-periodic.

(iv) The function log (wt) increases monotonically

value. So it is non-periodic.

periods with suitable coefficients.
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This equation defines S.H.M. Here

>

/ roblems For Practice constant called forc.e constant or Spring f‘: a posih‘\,
Which of the following functions of time rcpr'cscnt defined as é/IlL’ rtjiw; ll'clg j;(:ll’ce_éfroduced per zufittor-andii
(a) simple harmonic motion, (b) periodic but not 5{"'1”" ment. The unitof kis Nm™. The pe ative . Plu,
harmonic and (c) non-periodic motion ? Find the period of  above equation shows that the restoring force iy t,

each periodic motion. Here wis a positive real constant. a5 in the opposite direction of the diSPIacem alwa}'S

1. sin ot + cos wf. (Ans. Simple harmonic) Now, according to Newton’s Second ay of i x
2. sin nt + 2cos 2nt + 3sin 3nt. F=ma moh(’“,
(Ans. Periodic but not simple harmonic) ma=—kx
3. cos (20t + 1t/ 3). (Ans. Simple harmonic) a=- 2 X e
4. sin? ot. (Ans. Periodic but not simple harmonic) = m o e
5. cos of + 2sin? wf. Hence simple harmonic motion may 4
(Ans. Periodic but not simple harmonic) defined as follows : %0 b
HINTS A particle is said to possess sirfz;?le harmon;, Motigy i
L. sin of + cos ot =2 sin (ot + 1/4), T=2n/ o m;’lff-;s fo Z’;i Z;’ ”b‘r’;‘f ;rZ’:zZlPt‘(’)sitgr; l};n;ier an ﬂCCeIem;io'
) Rach termteprisents 28 M, ::;chzcnlpfsition agdpis Zways directed towzr[;ietnlj;?;g;'; ui
Period of sin nt, T = ?n =2s Examples of simple harmonic motior, - "
Period of 2 cos 2nf = 2% _ 18=T/2 (i) Oscillations of a loaded spring.
2n ‘ (if) Vibrations of a tuning fork.
Period of 3 sin 3nf = 2F - 2 s=T/3!l7 (iii) Vibrations.of the balance wheel of 5 watch,
il ) vl i A (iv) Oscillations of a freely suspended magnet in ;
The sum is not simple harmonic but periodic with uniform magnetic field.

T=2s.
3. cos (2wt + 1t/ 3) represents S.H.M. with
T=2n/20=1/a
4. sin® of =1/2-(1/2) cos 2at.

The function does not represent S.H.M. but is
periodic with T=2n/20 =1/

7. State some important features of stmple harmoni;
motion.
Some important features of S.H.M. :

(1) The motion of the particle is periodic.

(i) Itis the oscillatory motion of simplest kind in
which the particle oscillates back and forth
about its mean position with constant
amplitude and fixed frequency.

(ifi) Restoring force acting on the particle is propor-

5. cos ot + 2sin? of =cos of + 1-cos 2wt
=1+ cos ot —cos 2wt
cos of represents S.H.M. with T =2/ o

cos 2ot represents S.H.M. with period tional to its displacement from the mean position
=2n/20=n/w=T/2 (iv) The force acting on the particle always opposes

The combined function does not represent S.;H.M, the increase in its displacement.

but is periodic with T =2nr/ a. (t) A simple harmonic motion can always b¢

. i nic
expressed in terms of a single harmo
function of sine or cosine.

14.6 SIMPLE HARMONIC MOTION

6. What is meant by simple harmonic motion ? Gipe
some examples. 14.7 DIFFERENTIAL EQUATION FOR S.HM

Simple harmonic motion. A particle is said to execyte 8. Write down the differential equation for S-H'M '
simple harmonic motion if it moves to and fro about a mean  Give its solution. Hence obtain expression for time per?
position under the action of a restoring force which is of SHM.
directly proportional to its displacement from the mean
position and is always directed towards the mean position,

If the displacement of the oscillating body from the
mean position is small, then

the

Differential equation of SSHM. In S'H'M',alw

restoring force acting on the particle is proportio"
1ts displacement. Thus
F=—kx

-
The negative s d x are oFF
- . - gn shows that F and : L.
Fox or F=-kx Sitely directeq. Here k is spring factor or force cons

Restoring force oc Displacement

o osm—— ‘
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m_, Inertia factor
. =21 ez z Spring factor

_OSCILLATIONS

By Newton’s second law,
F=m d_zx
dt?

_ 2
where m is the mass of the particle and d‘; is its
dt

acceleration.
2 2
m g—; =—kx or Q = 5
dt? m
: 2
Put L w?, then 4X__ W2y
m dr?
dzx 2
or :it_z + ox=0 .(1)

This is the differential equation of S.H.M. Here
is the angular frequency. Clearly, x should be such a
function whose second derivative is equal to the
function itself multiplied with a negative constant. So a
possible solution of equation (1) may be of the form

x = A cos (ot + ¢,)

d
Then d—JtC:—mAsin(mt+¢0)
42
and E%=—(o2 Acos(mt+¢0)=—m2x
2
or —§+m2x =0
dt

which is same as equation (1). Hence the solution of the
equation (1) is
x = A cos (ot + ¢;) ..(2)
It gives displacement of the harmonic oscillator at
any instant ¢.

Here A is the amplitude of the oscillating particle.
¢=ot + ¢, is the phase of the oscillating particle.
¢p1s the initial phase (at t =0) or epoch. .
Time period of S.H.M. If we replace ¢ by ¢ + - in

equation (2), we get

X= Acos[m(f+%)+¢a]

= Acos (ot +271+ ¢y) = A cos (of + ¢;)

. . . 27 T
Le., the motion repeats after time interval ; Hence ;

is the time period of S.H.M.

_2n_ 2=: [ mzzk]
_——,/l\/m m

In general, m is called inertia factor and k the spring
factor.

14.8 SOME IMPORTANT TERMS
CONNECTED WITH S.H.M.

9. Define the terms harmonic oscillator, displacement,
amplitude, cycle, time period, frequency, angular frequency,
phase and epoch with reference to oscillatory motion.

Some important terms connected with S.H.M :

(1) Harmonic oscillator. A particle executing simple
harmonic motion is called harmonic oscillator.

(if) Displacement. The distance of the oscillating
particle from its mean position at any instant is called its
displacement. It is denoted by x.

There can be other kind of displacement variables.
These can be voltage variations in time across a capacitor
in an a.c. circuit, pressure variations in time in the propa-
gation of a sound wave, the changing electric and
magnetic fields in the propagation of a light wave, etc.

(iti) Amplitude. The maximum displacement of the
oscillating particle on either side of its mean position is
called its amplitude. It is denoted by A. Thusx_, =+ A

max

(iv) Oscillation or cycle. One complete back and forth
motion of a particle starting and ending at the same point is
called a cycle or oscillation or vibration.

(v) Time period. The time taken by a particle to
complete one oscillation is called its time period. Or, it is the
smallest time interval after which the oscillatory motion
repeats. It is denoted by T.

(vi) Frequency. It is defined as the number of oscillations
completed per unit time by a particle. It is denoted by v (nu).
Frequency is equal to the reciprocal of time period.
That is, '

V==
T
Clearly, the unit of frequency is (second)™ or s™. It is
also expressed as cycles per second (cps) or hertz (Hz).

SI unit of frequency =s™ = cps = Hz.

(vii) Angular frequency. It is the quantity obtained by
multiplying frequency v by a factor of 2m It is denoted
by @

Thus, m=21w=2—1r
T

SI unit of angular frequency =rad s™\.

(viii) Phase. The phase of a vibrating particle at any
instant gives the state of the particle as regards its position
and the direction of motion at that instant. It is equal to the
argument of sine or cosine function occurring in the
displacement equation of the S.H.M. Suppose a simple

“harmonic equation is represented by

x= A cos (ot + by)
Then phase of the particle is : b= ot + 9,

&
14:5 4P

4
7



i B 4.6 PHY

Clearly, the phase ¢ is a function of time /. I.l' 15
usually expressed either as the fraction of the IME
period T or fraction of angle 27 that has elapso'd‘ since
the vibrating particle last passed its mean position in
the positive direction.

¢ = ot + ¢, 0 n/2 T 3ﬂ/2I 2n I
x=Acos(wt+¢,) [ + A 0 - A 0 ""A

Thus the phase ¢ gives an idea about the posx:l'ion
and the direction of motion of the oscillating particle.

(ix) Initial phase or epoch. The phase of a vibrating
particle corresponding to time t =0is called initial phase or
epoch.

At !" = 0, (b — ¢0

The constant ¢, is called initial phase or epochl. It
tells about the initial state of motion of the vibrating
particle.
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= RELATIONSHIP BETV
12 PHASE RELATIONS! i,
) DISPLACEMENT, VELOCITY £y,
ACCELERATION

Draw d,‘gplnwnmnl-lzmr,. velociy, ity
phs for a particle p,xp(,',,m €y

D

14. ' 4
sleration-time gra '
¢ motion. Discuss their phase ""’"”‘"lsi,,-’f"7‘?;‘.;

lationship between particle (i P
acceleration in 5. H.M If 5 P,
executing 5.H.M. passes through its pogigjy, e;:a(:t‘ifg,
position (x=+A) a-l time t =0, then its diSplacer::hz
equation can be written as Theng
x(1)= Acos wf

"

acee '
harmont

Inter-n

velocity  and

X
Velocity, v(l)= -0 A sin ot

= wA cos (mt % E)
2

dov
Acceleration, a(t)= r =—w’ A €os wt

= @’ A cos (oot + )

Using the above relations, we determine the valyes of
displacement, velocity and acceleration at varigy
instants t for one complete cycle as illustrated below,

. o ST
Time, t 4 > 2 T
2n m 3 ]
Phase angle,wt = T t 0 E . 7“ In
Displacement, x () + A 0 - A 0 + A
max min. | max. | min. | max.
Velocity, v (t) 0 - 0A 0 + wA 0
min. | max. | min. | max. | min
Acceleration, a (t) - 0%A 0 + 02A 0 |[-0?4

max. min. max. | min. | max.

In Fig. 14.8, we have plotted separately the x versust,v
versus f and a versus ¢ curves for a simple harmonic motion.

T ! ] I
e +A | 1 1
1§ UG o 3T,4/—
g 0 ' t—
£ T/4 W T
& -A} ) ' :
: T T =
@
1T +0A ! ! '
2‘ ! | |
T oo ! T/ZA t -
o T/4 ' 3r/a T
s O)A i [ [}
i () !
T, | | I
N EAVERN
Eoo—12, : : t—
T, _/ T/2 3T/4 \T_
i R

(c)
Fig. 14.8 Relation between velocity, displacement
and acceleration in S.H.M.
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12, Here T=4s, A=2cm,
Brdeild 515 =157 rad s~
T

-1
Unax =0 A=157x2=314cm s™".
ma
At y=A/2=1cm,

-1
| 2_12=272¢cm s,
v=(o\Az—12=1.57 2° =14 =27

At the turning points, acceleration is maxizmum
> A=(157)% x2=4.93 cm s,
Tax = O° A = (1.57)% %
At y=0.75cm,

a2
A=’ y=(157)? x0.75=1.85 cm 2,
13. Here y=43/24

v=0a2 "7 - [A7 3442
= %mA=%vmax-
14. Let  y=Asin ot
Then v=@=
dt
3.142=2‘><3.142

2
A =12 cmand length of path

bl

21|
©wAcoswt =2-; ACOS‘

Acos £l ol

.coslz ‘
or

15!

=24=24 cm,
]
amaxém A=p.g 3 ] D

T
Acb&ling ‘

THI
G

47T2 ! » li
4 x9.8 x(1)
4x10

! 2
16. Take a.hl i =iw? A=[E) A=g,

%

o

T00%m=98em

h
2A=10cm,
m=50kg, v=2Hz
A=5em =005m =498y, 2

Brax = 02 A = 472 2 A
Max. force on the man
ki gt A =50(10
. Min, force on the man
=m(g—qg

17! Leng;ch 6f stréke =
18. Here

x0.05=7.9 mg-2.

+79)= 850N L go's kg

max) = 50 (10 T79=1050N

1413 enercy IN S.HM. . KINETIC AND
POTENTIAL ENERG|ES

15. Derive Expressions for the

. . kinetic and Potentiqg]
energies of a simple harmonic oscillator, Hence show thyy

the totql ENergy is conserved in
Positions of the oscillator, is the ene
wholly potential 7

S.HM

LI whic,
rgy wholly

kinetic or

=105 kg £,

ofap

PHYSICS-XI

doing work upon it, it a¢
the body is released, it begins o molenergy
velocity, thus acquiring Kinetje eney Ve back .vh.q

(1) Kinetic energy, At any inStant t. iy
of a particle executing S.H M. it

Quireg potemia

8lver by 'SPIac@m'
x=Acos(mt+¢b)

; dx
VelOClty, v =d\t =—-w A Sin((l)i‘+

%)
Hence kinetic energy of th Part
displacement x is given by e )
1 2 1
K=—m?2-2, - 2
7 Mo A2 g o ((DH%)
But A% sin? (of + %)= A%[1- cos? ( t+¢0)]
= A% - A% o2 (of + ¢0)\A2~x2
K==mae? 4 smz(mt+¢o)
or K:lmmz(Az-x2)=1k(A2 :
2 Al

(i) Potential energy. When th
particle from its equilibrium positi

@ displacemgy 0
force acting on it is

Onis x, the Testor

dW=—de=+kxdx

The total work done in moving the particle o
an position (x =0) to displacement X is given by

& 2 1.,
W:j dW:J‘ kxdx:k[—J =—kx
2 2
0 0
This work done 3

as the potentia] ener
energy of

me

gainst the restoring force s stor

8y of the particle. Hence poten:

a particle at displacement x is given by

u=lp02_1 ma’x
2 2

iii) Tota] ener

= _1. mg)zAz COS2 (ot Q)
2
(
energy of 5 harm

tota
8Y- At any displacement x, the 0
Onic oscillatory is given by

1,9
E=K+U=21k(A2—x2)+5kx

2
% Ezzlk A =12 42 o2t A
2

Thus ¢

f a harm®
. he tota] Mechanical energy of a
Oscillatoy i

ent

. isplace™
. > Independent of time or dlsﬁ,mm:m
ence in g, absence of any frictional force, the
armonjc osc,

illator jg conserved.

2
['.‘(l)“'
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obviO‘JSly' the total energy of particle in SHM. is
i) directly proportional to the mass 11 of the par.tid
(i) directly proportional to the g -
frequency v, and

iii) directly proportional to the square of jts v
( tional amplitude A. oL its vibra-

quare of its

Graphical representation. At the mean position, x =
Kinetic energy, K =% k (A2 —02) =% kA2
potential energy, U =1k (0% =0

Hence at the mean position, the energy is all kinetic
At the extreme positions, x =% A

Kinetic energy, K =% k (A2 - A2)=g

Potential energy, U =% kA2

Hence at the two extreme positions, the energy is
all potential.

Figure 14.12 shows the variations of kinetic energy
K, potential energy U and total energy E with displace-
ment x. The graphs for K and U are parabolic while
that for E is a straight line parallel to the displacement
axis. At x =0, the energy is all kinetic and for x =+ A,
the energy is all potential.

ﬂlEnergy
(-E=K+U

x=-A o x=+A

+—— Displacement ——

Fig. 14.12 K, U and E as functions of displacement X
for a harmonic oscillator.

Figure 14.13 shows the variations of energies K, U
and E of a harmonic oscillator with time . Clearly, twice n
each cycle, both kinetic and potential energies assume
their peak values. Both of these energies are periodic
functions of time, the time period of each being T /2.

&4
Y E=K+U
8 e
\\‘ I,l u
0] T/4 T2 317/4 T  Time()

Fig. 14.13 K, Uand E as functions of time ¢
for a harmonic oscillator.

14.17

Formulae Used
1. PE. at displacement y from the mean position,
1 1
Ep:;‘;_kyz=§mm2y2 =%mm2 A? sin” ot
2. K.E. at displacement y from the mean position,

1
Ek:Ek(Az_!/z)=%mm2(A2,*}fz)

1
b mo® A2 cos? of

3. Total energy at any point,
1
E=§kA2 =% mao? A2 =212 m A2 v?
Units Used

Energies E , E, and Eare in joule, displacement in
metre, force constant k in Nm™ and angular

frequency win rad s™.

Example 23. 4 block whose mass is 1 kg is fastened to a
spring. The spring has a spring constant of 50 N mt. The
block is pulled to a distance x =10 cm from its equilibrium
position at x =0 on a frictionless surface from rest at t =0.
Calculate the kinetic, potential and total energies of the block

when it is 5 cm away from the mean position.
[NCERT ; Delhi 18]

Solution. Here m=1kg, k=50N m™,
A=10cm =0.10m, y=5cm =0.05m

Kinetic energy,

E =1k(A*-y*)= 1% 50[(0.10)* -- (0.05)?]

=0.1875 ] :

Potential energy,

E, = 1 ky? =1 x 50 x (0.05)* = 0.0625 J
Total energy,

E=E + Ep =0.1875 +0.0625 = 0.25 J.

Example 24. A body executes SHM of time period & s. If
its mass be0.1 kg, its velocity 1 second after it passes throvigh
its mean position be 4 ms™}, find its (i) kinetic energy
(ii) potential energy and (iii) total energy.

Solution. Here m=0.1kg, T =8s
(o=£t—=gz=zrads_1
T 8 4
When t=ls,v=4ms"1
But v=w A cos ot
T T T 1
4=—><Acos(—x1)=— Ax —
n 4 4>< ><\/i
o A=16Jim
T
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i —Aqinz'-’-tf
Now y=Asinot = As T

A .
— = Asin —
2
or sinm—-—l-—sinﬁ
4 2 4
or n—t=E or t=1s.
4 4

‘ 1112
'As y=Asincor=Asm—,1¥f

2t n T
0.08 V2 =Asin = x— = Asin —
\/_Asmznx4 4

‘ 1
or '0.08v2=Ax—
hY \/E
A=0.08+2 x4/2 =0.16 m.

1 1 (2n)?
Total energy =5 m w® A® s (—77) A%

{ \2
5 1.024% 1072 2 Ly (E) %(0.16)2
i fhn2 2n

2x1.024 x107°

D, T
(0.16)

5. Here v=1/nHz, E=10], U = 0.4 ms1

or =0.08 kg.

Now VYpax =@ A=21v A
v _0.4><1t

A = Jmax _
2nv, 2xx1
As plidlpg2
- 2
: 2x10
ez 25 L 2X 10 g N
A2 (02)

(E))max = E=10].
6. Here F=mg=1.0x10N, y=2cm =0,02m
F_1.0x10
y

m ‘ 1.0
T=2n.[—=2x314x.— =0.28
Ve i V500 i

=500 Nm™!

E, = Work done in pulling the spring through
10 cm or 0.1 m ‘ ‘

1 21 2
==kx“==x500x%(0.1)=25T.
- 2kt = x500 (0.1 =25

14.14 OSCILLATIONS DUE TO A SPRING

16. Derive an expression for the time-period of the

horizontal oscillations of a massless loaded spring.

q
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horizontal table. Its one end is at

support and the other end to 5 bod acheq o,

body is pulled towards right thrg,, }Z’ % Magg n "

and released, it starts oscillaﬁng boa ka Sma| distau 0

its equilibrium position under thea for

restoring force of elasticity, actj
F=- k.\’

where k is the force constant (restorin
compression or extension) of the sprin 4 Orce pe, .

indicates that the force is directeq °PPOsitnegaﬁ"°51'g
Equilibrium 0 ely toy
N m
Stretched b Pe ke
'\ﬁm'l
_—
Compressed F=—kx |

e o

: T ——
f—x—

Fig. 14.14 Horizontal oscillations of a loadeq Spring

If d%x / dt? is the acceleration of the body, then
2

X
m—-=—kx
dt?
d’x  ~k 2
or — =-—X=-0x
dt m

This shows that the acceleration is proportionalt
displacement x and acts opposite to it. Hence the bod
executes simple harmonic motion. Its time period i
given by :

. ‘J__
or T=21[JE
k

Frequency of oscillation will be
12521581k

V= —=———F —

T 2n\Vm

Clearly, the time period T will
frequency v large if the spring is stiff
attached body is light (small m). )

17. Deduce an expression for the timepe
vertical oscillations of a massless loaded SpT ng:
depend on acceleration due to gravity ? ety 1[0

Vertical oscillations of a body on

be small odr
(high &

4 of It
sl

Honizot OSdHaﬁonS. o A bady «on. a Spring.  spring is suspended vertically from a rigi
Consider a massless spring lying on a frictionless and a body of mass m is attached to its Jower et

>




14.16 SIMPLE PENDULUM

13. Show that for small oscillations the motion of a
simple pendulum is simple harmonic. Derive an expression
for its time period. Does it depend on the mass of the bob ?

Simple pendulum. An ideal simple pendulum consists
of a point-mass suspended by a flexible, inelastic and weightless
string from a rigid support of infinite mass. In practice, we
can neither have a point-mass nor a weightless string.

In practice, a simple pendulum is obtained by
suspending a small metal bob by a long and fine cotton
thread from a rigid support.

Expression for time period. In the equilibrium
position, the bob of a simple pendulum lies vertically
below the point of suspension. If the bob is slightly
displaced on either side and released, it begins to
oscillate about the mean position.

Suppose at any instant during oscillation, the bob
lies at position A when its displacement is OA = x and
the thread makes angle 6 with the vertical. The forces
acting on the bob are

(1) Weightmg of the bob acting vertically downwards.
(if) Tension T along the string.







