CBSE Test Paper 01 Chapter 2 Polynomials

- 1. The zeroes of a polynomial $x^2 + 5x 24$ are (1) a. one positive and one negative b. both positive c. both negative d. both equal 2. If 'lpha' and 'eta' are the zeroes of a quadratic polynomial $x^2-~5x~+~b$ and $\alpha - \beta = 1$, then the value of 'b' is (1) a. -6 b. -5 c. 5 d. 6 3. Degree of the polynomial $2x^4+3x^3-5x^2+9x+1$ is (1) a. 3 b. 1 c. 2 d. 4 4. If α and β are zeros of x^2 + 5x + 8, then the value of $(\alpha + \beta)$ is (1) a. -8 b. 8 c. 5 d. -5 5. Which of the following expressions is not a polynomial? (1) a. $5x^3 - 3x^2 - \sqrt{x} + 2$ b. $5x^3 - 3x^2 - x + \sqrt{2}$ c. $5x^2 - \frac{2}{3}x + 2\sqrt{5}$ d. $\sqrt{5}x^3 - \frac{3}{5}x + \frac{1}{7}$ 6. Find the zeroes of the polynomial $\sqrt{3}x^2$ - 8x + 4 $\sqrt{3}$. (1) 7. If the product of the zeros of the polynomial ($ax^2 - 6x - 6$) is 4. Find the value of a. (1)
 - 8. If $x^3 + x^2 ax + b$ is divisible by $(x^2 x)$, write the values of a and b. (1)

- 9. Find the zeros of the following quadratic polynomial and verify the relationship between the zeros and the coefficients: $3x^2 x 4$. (1)
- 10. Find all the zeroes of $f(x) = x^2 2x$. (1)
- 11. If α and β are the zeroes of the polynomial $4x^2 2x + (k 4)$ and $\alpha = \frac{1}{\beta}$, find the value of k. (2)
- 12. If one zero of the polynomial $(a^2 + 9)x^2 + 13x + 6a$ is the reciprocal of the other, find the value of a. (2)
- 13. Find a cubic polynomial whose zeros are 3, $\frac{1}{2}$ and -1. (2)
- 14. If α and β are zeroes of the polynomial $x^2 p(x+1) + c$ such that $(\alpha+1)(\beta+1) = 0$, then find the value of c. (3)
- 15. If the polynomial $x^4 6x^3 + 16x^2 25x + 10$ is divided by another polynomial $x^2 2x + k$, the remainder comes out to be x + a, find k and a. **(3)**
- 16. Find the zeroes of the given quadratic polynomials and verify the relationship between the zeroes and the coefficients. $x^2 2x 8$ (3)
- 17. A polynomial g(x) of degree zero is added to polynomial $2x^3 + 5x^2 14x + 10$, so that it becomes exactly divisible by 2x 3. Find g(x). (3)
- 18. A village of the North-East India is suffering from flood. A group of students decide to help them with food items, clothes etc, So the student collects some amount of rupees, which is represented by $x^4 + x^3 + 8x^2 + ax + b$
 - i. If the number of students is represented by $x^2 \ + \ 1$, find the values of a and b.
 - ii. What values have been depicted by the group of students? (4)
- 19. If α and β are the zeroes of the polynomial p(x) = 6x² + 5x k satisfying the relation, $\alpha \beta = \frac{1}{6}$, then find the value of k. (4)
- 20. If α and β are the zeroes of polynomial p(x) = $3x^2 + 2x + 1$, find the polynomial whose zeroes are $\frac{1-\alpha}{1+\alpha}$ and $\frac{1-\beta}{1+\beta}$. (4)

CBSE Test Paper 01 Chapter 2 Polynomials

Solution

1. a. one positive and one negative Explanation: $x^2 + 5x - 24$ $= x^2 + 8x - 3x - 24$ = x (x + 8) - 3 (x + 8) = 0 (x + 8) (x - 3) = 0 $\therefore x + 8 = 0 \text{ or } x - 3 = 0$ $\Rightarrow x = -8 \text{ or } x = 3$ 2. d. 6

> **Explanation:** Here $\alpha + \beta = \frac{-b}{a} = \frac{-(-5)}{1}\alpha + \beta = 5$ (i) And it is given that $\alpha - \beta = 1$ (ii) On solving eq. (i) and eq. (ii), we get $\alpha + \beta = 5$ $\alpha - \beta = 1$ $2a = 6 \ (\beta \text{ is cancelled})$ $\alpha = \frac{6}{2}$ $\alpha = 3$ Put the value of α in eq. (i) $\alpha + \beta = 5$ $\Rightarrow 3 + \beta = 5$ $\Rightarrow \beta = 5 - 3$ $\Rightarrow \beta = 2$ $\therefore \alpha\beta = \frac{c}{a}$ $\Rightarrow 3 \times 2 = \frac{b}{1} \Rightarrow b = 6$

3. d. 4

Explanation: The highest power of the variable is 4. So, the degree of the polynomial is 4.

4. d. -5

Explanation: $x^2 + 5x + 8$

$$\alpha + \beta = \frac{-\text{Coefficient of } x}{\text{Coefficient of } x^2}$$
$$= \frac{-5}{1}$$
$$= -5$$

5.

a. $5x^3 - 3x^2 - \sqrt{x} + 2$ **Explanation:** $5x^3 - 3x^2 - \sqrt{x} + 2$ is not a polynomial because each term of a polynomial should be a product of a constant and one or more variable raised to a positive, zero or integral power. Here \sqrt{x} does not satisfy the condition of being a polynomial.

6. We have to find the zeroes of the polynomial $\sqrt{3}x^2$ - 8x + $4\sqrt{3}$.

$$p(x) = \sqrt{3} x^{2} - 8x + 4\sqrt{3}$$

= $\sqrt{3}x^{2} - 6x - 2x + 4\sqrt{3} = 0$
= $\sqrt{3}(x - 2\sqrt{3}) - 2(x - 2\sqrt{3})$
= $(\sqrt{3}x - 2)(x - 2\sqrt{3}) = 0$
∴ Zeroes = $\frac{2}{\sqrt{3}}, 2\sqrt{3}$

7. According to the question, we have to find the value of a such that the product of the zeros of the polynomial ($ax^2 - 6x - 6$) is 4.

Let α and β be the zeros of the polynomial (ax² - 6x - 6) Then, $\alpha \beta = \frac{\text{constant term}}{\text{coefficient of } x^2} = \frac{-6}{a}$ But, $\alpha \beta = 4$ (given). $\therefore \quad \frac{-6}{a} = 4 \Rightarrow 4a = -6 \Rightarrow a = \frac{-6}{4} = \frac{-3}{2}$ Hence, $a = \frac{-3}{2}$ 8. Since $f(x) = x^3 + x^2 - ax + b$ is divisible by (x² - x), we have $x^2 - x = 0$ $\Rightarrow x(x - 1) = 0$ $\Rightarrow x = 0 \text{ or } x = 1$ Hence, f(0) = 0 $\Rightarrow x^3 + x^2 - ax + b = 0$ $\Rightarrow 0^3 + 0^2 - a(0) + b = 0$ $\Rightarrow b = 0$ Also,

$$f(1) = 0$$

$$\Rightarrow x^{3} + x^{2} - ax + b = 0$$

$$\Rightarrow 1^{3} + 1^{2} - a(1) + 0 = 0$$

$$\Rightarrow 1 + 1 - a = 0$$

$$\Rightarrow 2 - a = 0$$

$$\Rightarrow a = 2$$

Hence , the value of a and b in given polynomial are a = 2 and b = 0.

9. We have,
$$f(x) = 3x^2 - x - 4$$

 $= 3x^2 - 4x + 3x - 4$
 $= x(3x - 4) + 1(3x - 4)$
 $= (3x - 4))(x + 1)$
 $\therefore f(x) = 0$
 $\Rightarrow (3x - 4)(x + 1) = 0$
 $\Rightarrow 3x - 4 = 0 \text{ or } x + 1 = 0$
 $\Rightarrow x = \frac{4}{3} \text{ or } x = -1$
So, the zeros of $f(x)$ are $\frac{4}{3}$ and -1
Now sum of zeros $= \frac{4}{3} + (-1) = \frac{1}{3} = \frac{-(\text{coefficient of } x)}{(\text{coefficient of } x^2)}$.
And product of zeros $= \frac{4}{3} \times (-1) = \frac{-4}{3} = \frac{\text{constant term}}{(\text{coefficient of } x^2)}$
10. $f(x) = x^2 - 2x$
 $= x (x - 2)$
 $f(x) = 0 \Rightarrow x = 0 \text{ or } x = 2$
Hence, zeroes are 0 and 2.
11. Here $p(x) = 4x^2 - 2x + k - 4$
Here $a=4,b=-2,c=k-4$
Given a and β are zeros of the given polynomial
 $\alpha = \frac{1}{\beta},$
 $\Rightarrow \beta = \frac{1}{\alpha}$
 $\alpha\beta = 1$
 $also \ \alpha\beta = \frac{c}{a} = \frac{k-4}{4}$
So $\frac{k-4}{4} = 1$
 $k - 4 = 4$

k = 4 + 4 = 8

12. Let α and $\frac{1}{\alpha}$ be the zeros of $(a^2 + 9)x^2 + 13x + 6a$. Then, we have

$$\alpha \times \frac{1}{\alpha} = \frac{6a}{a^2+9}$$

$$\Rightarrow 1 = \frac{6a}{a^2+9}$$

$$\Rightarrow a^2 + 9 = 6a$$

$$\Rightarrow a^2 - 6a + 9 = 0$$

$$\Rightarrow a^2 - 3a - 3a + 9 = 0$$

$$\Rightarrow a(a - 3) - 3(a - 3) = 0$$

$$\Rightarrow (a - 3) (a - 3) = 0$$

$$\Rightarrow (a - 3)^2 = 0$$

$$\Rightarrow a - 3 = 0$$

$$\Rightarrow a = 3$$

So, the value of a in given polynomial is 3.

13. Let
$$\alpha = 3$$
, $\beta = \frac{1}{2}$ and $\gamma = -1$. Then,
 $(\alpha + \beta + \gamma) = (3 + \frac{1}{2} - 1) = \frac{5}{2}$,
 $(\alpha\beta + \beta\gamma + \gamma\alpha) = (\frac{3}{2} - \frac{1}{2} - 3) = \frac{-4}{2} = -2$
and $\alpha\beta y = \{3 \times \frac{1}{2} \times (-1)\} = \frac{-3}{2}$
The polynomial with zeros α,β and γ is:
 $x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma$
 $= x^3 - \frac{5}{2}x^2 - 2x + \frac{3}{2}$
Thus, $2x^3 - 5x^2 - 4x + 3$ is the desired polynomial.
14. Given, α and β are the zeroes of polynomial $x^2 - p(x + 1) + c$
which can be written as $x^2 - px + c - p$
So, sum of zeroes, $\alpha + \beta = p$ [\because sum of coefficients = $\frac{-(coefficient(x))}{coefficient(x^2)}$]
and product of zeroes $\alpha\beta = c - p$ [\because product of cofficients = $\frac{constant_term}{coefficient(x^2)}$,]
Also, $(\alpha + 1)(\beta + 1) = 0$
 $\alpha\beta + \alpha + \beta + 1 = 0$
 $\Rightarrow c - p + p + 1 = 0$
 $\Rightarrow c = -1$
15. On dividing $x^4 - 6x^3 - 16x^2 - 25x + 10$ by $x^2 - 2x + k$

∴ Remainder = (2k - 9)x - (8 - k)k + 10

But the remainder is given as x+a.

On comparing their coefficients,

2k - 9 = 1

- \Rightarrow k = 10
- \Rightarrow k = 5 and,
- -(8 k)k + 10 = a
- ⇒ a = -(8 5)5 + 10 = -15 + 10 = -5
- Hence, k = 5 and a = -5
- 16. Let $p(x) = x^2 2x 8$

By the method of splitting the middle term,

$$x^{2} - 2x - 8 = x^{2} - 4x + 2x - 8$$

$$= x(x - 4) + 2(x - 4) = (x - 4)(x + 2)$$

For zeroes of p(x),

$$p(x) = 0$$

$$\Rightarrow (x - 4)(x + 2) = 0$$

$$\Rightarrow x - 4 = 0 \text{ or } x + 2 = 0$$

$$\Rightarrow x = 4 \text{ or } x = -2$$

$$\Rightarrow x = 4, -2$$

So, the zeroes of p(x) are 4 and -2.
We observe that, Sum of its zeroes

$$= 4 + (-2) = 2$$

 $= \frac{-(-2)}{1} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$

Product of its zeroes

 $=4x(-2)=-8=rac{-8}{1}=rac{ ext{Constant term}}{ ext{Coefficient of }x^2}$

Hence, relation between zeroes and coefficients is verified.

17. According to the question, g(x) of degree degree zero is added to the polynomial $(2x^3+2x^2-14x+10)$

such that it becomes completely divisible by 2x-3.

Let g(x)=k, then $2x^3 + 5x^2 - 14x + 10$ + k will be exactly divisible by 2x - 3.

 $P(x) = 2x^3 + 5x^2 - 14x + 10 + k$

We know dividend = quotient x divisor + remainder

On dividing $2x^3 + 5x^2 - 14x + 10 + k$ by 2x - 3, we get quotient $x^2 + 4x - 1$ and remainder = k+7

The degree of g(x) is zero then g(x) = 0

$$\Rightarrow k+7=0 \Rightarrow k=-7$$

18. i. First we divide $x^4 + x^3 + 8x^2 + ax + b$ by $x^2 + 1$ as follows:

$$x^{2} + 1 \overline{\smash{\big)}x^{4} + x^{3} + 8x^{2} + ax + b} \\ x^{4} + x^{2} \\ - - \\ x^{3} + x^{2} + ax + b \\ x^{3} + x \\ - - \\ \hline x^{3} + x \\ - - \\ \hline 7x^{2} + (a - 1)x + b \\ 7x^{2} + 7 \\ - - \\ \hline (a - 1)x + (b - 7) \\ - \\ \hline x^{2} + (a - 1)x + b \\ - \\ \hline x^{2} + 7 \\ - \\ \hline (a - 1)x + (b - 7) \\ - \\ \hline x^{2} + (a - 1)x + b \\ - \\ \hline x^{2} + 7 \\ - \\ \hline x^{2} + 7 \\ - \\ \hline x^{2} + 7 \\ - \\ \hline x^{2} + (a - 1)x + b \\ - \\ x^{2} + 7 \\ - \\ \hline x^{2} + 7 \\ - \\ x^{2} + 7$$

Since $x^4 + x^3 + 8x^2 + ax + b$ is divisible by $x^2 + 1$, therefore remainder = 0

i.e. (a-1)x + (b-7) = 0or (a-1)x + (b-7) = 0x + 0Equating the corresponding terms, We have a-1 = 0 and b-7 = 0

i.e. a = 1 and b = 7

ii. Common good, Social responsibility

19. According to the question,
$$\alpha$$
 and β are zeroes of p(x) = 6x² - 5x + k
So, Sum of zeroes = $\alpha + \beta = -\left(\frac{-5}{6}\right) = \frac{5}{6}$(i)

$$\alpha - \beta = \frac{1}{6} \text{(Given)(ii)}$$
Adding equations (i) and (ii), we get
$$2\alpha = 1$$
or, $\alpha = \frac{1}{2}$
On putting the value of α in equation (ii), we get
$$\frac{1}{2} - \beta = \frac{1}{6}$$
 $\beta = \frac{1}{2} - \frac{1}{6}$
 $\beta = \frac{2}{6} = \frac{1}{3}$
 $\therefore \alpha\beta = \frac{k}{6} = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$

Hence, k = 1

20. Since α and β are the zeroes of polynomial $3x^2 + 2x + 1$.

Hence,
$$\alpha + \beta = -\frac{2}{3}$$

and $\alpha\beta = \frac{1}{3}$
Now, for the new polynomial,
Sum of zeroes $= \frac{1-\alpha}{1+\alpha} + \frac{1-\beta}{1+\beta}$
 $= \frac{(1-\alpha+\beta-\alpha\beta)+(1+\alpha-\beta-\alpha\beta)}{(1+\alpha)(1+\beta)}$
 $= \frac{2-2\alpha\beta}{(1+\alpha)(1+\beta)} = \frac{2-\frac{2}{3}}{1-\frac{2}{3}+\frac{1}{3}}$
 \therefore Sum of zeroes $= \frac{4/3}{2/3} = 2$
Product of zeroes $= \left[\frac{1-\alpha}{1+\alpha}\right] \left[\frac{1-\beta}{1+\beta}\right]$
 $= \frac{(1-\alpha)(1-\beta)}{(1+\alpha)(1+\beta)}$
 $= \frac{1-(\alpha+\beta)+\alpha\beta}{1+(\alpha+\beta)+\alpha\beta}$
 $= \frac{1+\frac{2}{3}+\frac{1}{3}}{1-\frac{2}{3}+\frac{1}{3}} = \frac{\frac{6}{3}}{\frac{3}{3}} = 3$

Hence, Required polynomial = x^2 - (Sum of zeroes)x + Product of zeroes

$$= x^2 - 2x + 3$$