CBSE Test Paper 01

Chapter 2 Polynomials

1. The zeroes of a polynomial $x^{2}+5 x-24$ are (1)
a. one positive and one negative
b. both positive
c. both negative
d. both equal
2. If ' α ' and ' β ' are the zeroes of a quadratic polynomial $x^{2}-5 x+b$ and $\alpha-\beta=1$, then the value of ' b ' is (1)
a. -6
b. -5
c. 5
d. 6
3. Degree of the polynomial $2 x^{4}+3 x^{3}-5 x^{2}+9 x+1$ is (1)
a. 3
b. 1
c. 2
d. 4
4. If α and β are zeros of $x^{2}+5 \mathrm{x}+8$, then the value of $(\alpha+\beta)$ is (1)
a. -8
b. 8
c. 5
d. -5
5. Which of the following expressions is not a polynomial? (1)
a. $5 x^{3}-3 x^{2}-\sqrt{x}+2$
b. $5 x^{3}-3 x^{2}-x+\sqrt{2}$
c. $5 x^{2}-\frac{2}{3} x+2 \sqrt{5}$
d. $\sqrt{5} x^{3}-\frac{3}{5} x+\frac{1}{7}$
6. Find the zeroes of the polynomial $\sqrt{3} x^{2}-8 x+4 \sqrt{3}$. (1)
7. If the product of the zeros of the polynomial $\left(a x^{2}-6 x-6\right)$ is 4 . Find the value of a. (1)
8. If $x^{3}+x^{2}-a x+b$ is divisible by $\left(x^{2}-x\right)$, write the values of a and b. (1)
9. Find the zeros of the following quadratic polynomial and verify the relationship between the zeros and the coefficients: $3 \mathrm{x}^{2}-\mathrm{x}-4$. (1)
10. Find all the zeroes of $f(x)=x^{2}-2 x$. (1)
11. If α and β are the zeroes of the polynomial $4 x^{2}-2 x+(k-4)$ and $\alpha=\frac{1}{\beta}$, find the value of k. (2)
12. If one zero of the polynomial $\left(a^{2}+9\right) x^{2}+13 x+6 a$ is the reciprocal of the other, find the value of a. (2)
13. Find a cubic polynomial whose zeros are $3, \frac{1}{2}$ and -1. (2)
14. If α and β are zeroes of the polynomial $x^{2}-p(x+1)+c$ such that $(\alpha+1)(\beta+1)=0$, then find the value of c . (3)
15. If the polynomial $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by another polynomial $x^{2}-2 x+$ k , the remainder comes out to be $\mathrm{x}+\mathrm{a}$, find k and a . (3)
16. Find the zeroes of the given quadratic polynomials and verify the relationship between the zeroes and the coefficients. $\mathrm{x}^{2}-2 \mathrm{x}-8$ (3)
17. A polynomial $\mathrm{g}(\mathrm{x})$ of degree zero is added to polynomial $2 x^{3}+5 x^{2}-14 x+10$, so that it becomes exactly divisible by $2 x-3$. Find $\mathrm{g}(\mathrm{x})$. (3)
18. A village of the North-East India is suffering from flood. A group of students decide to help them with food items, clothes etc, So the student collects some amount of rupees, which is represented by $x^{4}+x^{3}+8 x^{2}+a x+b$
i. If the number of students is represented by $x^{2}+1$, find the values of a and b.
ii. What values have been depicted by the group of students? (4)
19. If α and β are the zeroes of the polynomial $\mathrm{p}(\mathrm{x})=6 \mathrm{x}^{2}+5 \mathrm{x}-\mathrm{k}$ satisfying the relation, $\alpha-\beta=\frac{1}{6}$, then find the value of k. (4)
20. If α and β are the zeroes of polynomial $\mathrm{p}(\mathrm{x})=3 \mathrm{x}^{2}+2 \mathrm{x}+1$, find the polynomial whose zeroes are $\frac{1-\alpha}{1+\alpha}$ and $\frac{1-\beta}{1+\beta}$.

CBSE Test Paper 01

Chapter 2 Polynomials

Solution

1. a. one positive and one negative

Explanation: $x^{2}+5 x-24$
$=x^{2}+8 x-3 x-24$
$=x(x+8)-3(x+8)=0$
$(x+8)(x-3)=0$
$\therefore x+8=0$ or $x-3=0$
$\Rightarrow x=-8$ or $x=3$
2. d. 6

Explanation: Here $\alpha+\beta=\frac{-b}{a}=\frac{-(-5)}{1} \alpha+\beta=5$
And it is given that $\alpha-\beta=1$
On solving eq. (i) and eq. (ii), we get

$$
\begin{aligned}
& \alpha+\beta=5 \\
& \alpha-\beta=1
\end{aligned}
$$

$$
\begin{aligned}
& 2 a=6 \text { (} \beta \text { is cancelled) } \\
& \alpha=\frac{6}{2} \\
& \alpha=3 \text { Put the value of } \alpha \text { in eq. (i) } \\
& \alpha+\beta=5 \\
& \Rightarrow 3+\beta=5 \\
& \Rightarrow \beta=5-3 \\
& \Rightarrow \beta=2 \\
& \therefore \alpha \beta=\frac{c}{a} \\
& \Rightarrow 3 \times 2=\frac{b}{1} \Rightarrow b=6
\end{aligned}
$$

3. d. 4

Explanation: The highest power of the variable is 4. So, the degree of the polynomial is 4.
4. d. -5

Explanation: $x^{2}+5 x+8$

$$
\begin{aligned}
& \alpha+\beta=\frac{- \text { Coefficient of } \mathrm{x}}{\text { Coefficient of } x^{2}} \\
& =\frac{-5}{1} \\
& =-5
\end{aligned}
$$

5. a. $5 x^{3}-3 x^{2}-\sqrt{x}+2$

Explanation: $5 x^{3}-3 x^{2}-\sqrt{x}+2$ is not a polynomial because each term of a polynomial should be a product of a constant and one or more variable raised to a positive, zero or integral power. Here \sqrt{x} does not satisfy the condition of being a polynomial.
6. We have to find the zeroes of the polynomial $\sqrt{3} x^{2}-8 x+4 \sqrt{3}$.
$p(x)=\sqrt{3} x^{2}-8 x+4 \sqrt{3}$
$=\sqrt{3} \mathrm{x}^{2}-6 \mathrm{x}-2 \mathrm{x}+4 \sqrt{3}=0$
$=\sqrt{3}(x-2 \sqrt{3})-2(x-2 \sqrt{3})$
$=(\sqrt{3} x-2)(x-2 \sqrt{3})=0$
\therefore Zeroes $=\frac{2}{\sqrt{3}}, 2 \sqrt{3}$
7. According to the question,we have to find the value of a such that the product of the zeros of the polynomial $\left(\mathrm{ax}^{2}-6 \mathrm{x}-6\right)$ is 4 .

Let α and β be the zeros of the polynomial ($\mathrm{ax}^{2}-6 \mathrm{x}-6$)
Then, $\alpha \beta=\frac{\text { constant term }}{\text { coefficient of } x^{2}}=\frac{-6}{a}$
But, $\alpha \beta=4$ (given).
$\therefore \quad \frac{-6}{a}=4 \Rightarrow 4 a=-6 \Rightarrow a=\frac{-6}{4}=\frac{-3}{2}$
Hence, $\mathrm{a}=\frac{-3}{2}$
8. Since $f(x)=x^{3}+x^{2}-a x+b$ is divisible by $\left(x^{2}-x\right)$, we have
$x^{2}-x=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-1)=0$
$\Rightarrow \mathrm{x}=0$ or $\mathrm{x}=1$
Hence,
$f(0)=0$
$\Rightarrow \mathrm{x}^{3}+\mathrm{x}^{2}-\mathrm{ax}+\mathrm{b}=0$
$\Rightarrow 0^{3}+0^{2}-\mathrm{a}(0)+\mathrm{b}=0$
$\Rightarrow \mathrm{b}=0$
Also,
$f(1)=0$
$\Rightarrow \mathrm{x}^{3}+\mathrm{x}^{2}-\mathrm{ax}+\mathrm{b}=0$
$\Rightarrow 1^{3}+1^{2}-\mathrm{a}(1)+0=0$
$\Rightarrow 1+1-\mathrm{a}=0$
$\Rightarrow 2-\mathrm{a}=0$
$\Rightarrow \mathrm{a}=2$
Hence, the value of a and b in given polynomial are $a=2$ and $b=0$.
9. We have, $f(x)=3 x^{2}-x-4$
$=3 x^{2}-4 x+3 x-4$
$=x(3 x-4)+1(3 x-4)$
$=(3 x-4))(x+1)$
$\therefore \mathrm{f}(\mathrm{x})=0$
$\Rightarrow(3 \mathrm{x}-4)(\mathrm{x}+1)=0$
$\Rightarrow 3 \mathrm{x}-4=0$ or $\mathrm{x}+1=0$
$\Rightarrow x=\frac{4}{3}$ or $\mathrm{x}=-1$
So, the zeros of $\mathrm{f}(\mathrm{x})$ are $\frac{4}{3}$ and -1
Now sum of zeros $=\frac{4}{3}+(-1)=\frac{1}{3}=\frac{-(\operatorname{coefficient~of~} x)}{\left(\text { coefficient of } x^{2}\right)}$.
And product of zeros $=\frac{4}{3} \times(-1)=\frac{-4}{3}=\frac{\text { constant term }}{\left(\text { coefficient of } x^{2}\right)}$
10. $f(x)=x^{2}-2 x$
$=x(x-2)$
$\mathrm{f}(\mathrm{x})=0 \Rightarrow \mathrm{x}=0$ or $\mathrm{x}=2$
Hence, zeroes are 0 and 2.
11. Here $p(x)=4 x^{2}-2 x+k-4$

Here $a=4, b=-2, c=k-4$
Given α and β are zeros of the given polynomial
$\alpha=\frac{1}{\beta}$,
$\Rightarrow \beta=\frac{1}{\alpha}$
$\alpha \beta=1$
also $\alpha \beta=\frac{c}{a}=\frac{k-4}{4}$
So $\frac{k-4}{4}=1$
$\mathrm{k}-4=4$
$\mathrm{k}=4+4=8$
12. Let α and $\frac{1}{\alpha}$ be the zeros of $\left(a^{2}+9\right) x^{2}+13 x+6 a$.

Then, we have
$\alpha \times \frac{1}{\alpha}=\frac{6 a}{a^{2}+9}$
$\Rightarrow 1=\frac{6 a}{a^{2}+9}$
$\Rightarrow \mathrm{a}^{2}+9=6 \mathrm{a}$
$\Rightarrow a^{2}-6 a+9=0$
$\Rightarrow \mathrm{a}^{2}-3 \mathrm{a}-3 \mathrm{a}+9=0$
$\Rightarrow a(a-3)-3(a-3)=0$
$\Rightarrow(\mathrm{a}-3)(\mathrm{a}-3)=0$
$\Rightarrow(\mathrm{a}-3)^{2}=0$
$\Rightarrow \mathrm{a}-3=0$
$\Rightarrow \mathrm{a}=3$
So, the value of a in given polynomial is 3 .
13. Let $\alpha=3, \beta=\frac{1}{2}$ and $\gamma=-1$. Then,
$(\alpha+\beta+\gamma)=\left(3+\frac{1}{2}-1\right)=\frac{5}{2}$,
$(\alpha \beta+\beta \gamma+\gamma \alpha)=\left(\frac{3}{2}-\frac{1}{2}-3\right)=\frac{-4}{2}=-2$
and $\alpha \beta y=\left\{3 \times \frac{1}{2} \times(-1)\right\}=\frac{-3}{2}$
The polynomial with zeros α, β and γ is:
$\mathrm{x}^{3}-(\alpha+\beta+\gamma) \mathrm{x}^{2}+(\alpha \beta+\beta \gamma+\gamma \alpha) \mathrm{x}-\alpha \beta \gamma$
$=\mathrm{x}^{3}-\frac{5}{2} \mathrm{x}^{2}-2 \mathrm{x}+\frac{3}{2}$
Thus, $2 x^{3}-5 x^{2}-4 x+3$ is the desired polynomial.
14. Given, α and β are the zeroes of polynomial $x^{2}-p(x+1)+c$
which can be written as $x^{2}-p x+c-p$
So, sum of zeroes, $\alpha+\beta=p\left[\because\right.$ sum of coefficients $\left.=\frac{-(\operatorname{coefficient}(x))}{\operatorname{coefficient}\left(x^{2}\right)}\right]$
and product of zeroes $\alpha \beta=c-p\left[\because\right.$ product of cofficients= $\frac{\text { constant_term }}{\operatorname{coefficient}\left(x^{2}\right)}$,]
Also, $(\alpha+1)(\beta+1)=0$
$\alpha \beta+\alpha+\beta+1=0$
$\Rightarrow c-p+p+1=0$
$\Rightarrow c=-1$
15. On dividing $x^{4}-6 x^{3}-16 x^{2}-25 x+10$ by $x^{2}-2 x+k$

$$
\left.\left.\begin{array}{rl}
x^{2}-2 x+k & x^{2}-4 x+(8-k) \\
x^{4}-6 x^{3}+16 x^{2}-25 x+10 \\
x^{4}-2 x^{3}+k x^{2}
\end{array}\right]+\begin{array}{l}
-4 x^{3}+(16-k) x^{2}-25 x+10 \\
\\
\frac{-4 x^{3}+8 x^{2}}{+}-4 k x
\end{array}\right]+\begin{aligned}
& (8-k) x^{2}+(4 k-25) x+10 \\
& \frac{(8-k) x^{2}-2(8-k) x+(8-k) k}{}+\quad- \\
& -\quad(2 k-9) x-(8-k) k+10
\end{aligned}
$$

\therefore Remainder $=(2 k-9) \mathrm{x}-(8-\mathrm{k}) \mathrm{k}+10$
But the remainder is given as $x+a$.
On comparing their coefficients,
$2 \mathrm{k}-9=1$
$\Rightarrow \mathrm{k}=10$
$\Rightarrow \mathrm{k}=5$ and,
$-(8-k) k+10=a$
$\Rightarrow \mathrm{a}=-(8-5) 5+10=-15+10=-5$
Hence, $\mathrm{k}=5$ and $\mathrm{a}=-5$
16. Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}-8$

By the method of splitting the middle term,
$x^{2}-2 x-8=x^{2}-4 x+2 x-8$
$=x(x-4)+2(x-4)=(x-4)(x+2)$
For zeroes of $\mathrm{p}(\mathrm{x})$,
$p(x)=0$
$\Rightarrow(x-4)(x+2)=0$
$\Rightarrow x-4=0$ or $x+2=0$
$\Rightarrow x=4$ or $x=-2$
$\Rightarrow x=4,-2$
So, the zeroes of $\mathrm{p}(\mathrm{x})$ are 4 and -2 .
We observe that, Sum of its zeroes
$=4+(-2)=2$
$=\frac{-(-2)}{1}=\frac{-(\text { Coefficient of } x)}{\text { Coefficient of } x^{2}}$

Product of its zeroes
$=4 x(-2)=-8=\frac{-8}{1}=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$
Hence, relation between zeroes and coefficients is verified.
17. According to the question, $\mathrm{g}(\mathrm{x})$ of degree degree zero is added to the polynomial $\left(2 x^{3}+2 x^{2}-14 x+10\right)$
such that it becomes completely divisible by $2 x-3$.
Let $\mathrm{g}(\mathrm{x})=\mathrm{k}$, then $2 x^{3}+5 x^{2}-14 x+10+\mathrm{k}$ will be exactly divisible by $2 x-3$.
$\mathrm{P}(\mathrm{x})=2 x^{3}+5 x^{2}-14 x+10+k$
We know dividend $=$ quotient x divisor + remainder
On dividing $2 x^{3}+5 x^{2}-14 x+10+k$ by $2 x-3$, we get quotient $x^{2}+4 x-1$ and remainder $=\mathrm{k}+7$
The degree of $g(x)$ is zero then $g(x)=0$
$\Rightarrow k+7=0 \Rightarrow k=-7$
$\therefore \mathrm{g}(\mathrm{x})=-7$
18. i. First we divide $x^{4}+x^{3}+8 x^{2}+a x+b$ by $x^{2}+1$ as follows:

$$
\begin{array}{r}
\frac{x^{2}+x+7}{x ^ { 2 } + 1 \longdiv { x ^ { 4 } + x ^ { 3 } + 8 x ^ { 2 } + a x + b }} \\
\frac{x^{4}+x^{2}}{-\quad-} \begin{array}{l}
x^{3}+7 x^{2}+a x+b \\
-x^{3}+x
\end{array} \\
\frac{7 x^{2}+(a-1) x+b}{(a-1) x+(b-7)}
\end{array}
$$

Since $x^{4}+x^{3}+8 x^{2}+a x+b$ is divisible by $x^{2}+1$, therefore remainder $=0$
i.e. $(a-1) x+(b-7)=0$
or $(a-1) x+(b-7)=0 x+0$
Equating the corresponding terms, We have
$a-1=0$ and $b-7=0$
i.e. $a=1$ and $b=7$
ii. Common good, Social responsibility
19. According to the question, α and β are zeroes of $\mathrm{p}(\mathrm{x})=6 \mathrm{x}^{2}-5 \mathrm{x}+\mathrm{k}$

So, Sum of zeroes $=\alpha+\beta=-\left(\frac{-5}{6}\right)=\frac{5}{6}$
$\alpha-\beta=\frac{1}{6}$ (Given)
Adding equations (i) and (ii) , we get
$2 \alpha=1$
or, $\alpha=\frac{1}{2}$
On putting the value of α in equation (ii), we get
$\frac{1}{2}-\beta=\frac{1}{6}$
$\beta=\frac{1}{2}-\frac{1}{6}$
$\beta=\frac{2}{6}=\frac{1}{3}$
$\therefore \alpha \beta=\frac{k}{6}=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$
Hence, $\mathrm{k}=1$
20. Since α and β are the zeroes of polynomial $3 \mathrm{x}^{2}+2 \mathrm{x}+1$.

Hence, $\alpha+\beta=-\frac{2}{3}$
and $\alpha \beta=\frac{1}{3}$
Now, for the new polynomial,
Sum of zeroes $=\frac{1-\alpha}{1+\alpha}+\frac{1-\beta}{1+\beta}$
$=\frac{(1-\alpha+\beta-\alpha \beta)+(1+\alpha-\beta-\alpha \beta)}{(1+\alpha)(1+\beta)}$
$=\frac{2-2 \alpha \beta}{1+\alpha+\beta+\alpha \beta}=\frac{2-\frac{2}{3}}{1-\frac{2}{3}+\frac{1}{3}}$
\therefore Sum of zeroes $=\frac{4 / 3}{2 / 3}=2$
Product of zeroes $=\left[\frac{1-\alpha}{1+\alpha}\right]\left[\frac{1-\beta}{1+\beta}\right]$
$=\frac{(1-\alpha)(1-\beta)}{(1+\alpha)(1+\beta)}$
$=\frac{1-(\alpha+\beta)+\alpha \beta}{1+(\alpha+\beta)+\alpha \beta}$
$=\frac{1+\frac{2}{3}+\frac{1}{3}}{1-\frac{2}{3}+\frac{1}{3}}=\frac{\frac{6}{3}}{\frac{3}{3}}=3$
Hence, Required polynomial $=x^{2}$ - (Sum of zeroes) $x+$ Product of zeroes $=x^{2}-2 x+3$

