CBSE Test Paper 01

Chapter 4 Quadratic Equation

1. $(x+1)^{2}-x^{2}=0$ has (1)
a. no real roots
b. 1 real root
c. 2 real roots
d. 4 real roots
2. $9 x^{2}+12 x+4=0$ have (1)
a. Real and Distinct roots
b. No real roots
c. Distinct roots
d. Real and Equal roots
3. If the equation $\left(a^{2}+b^{2}\right) x^{2}-2(a c+b d) x+c^{2}+d^{2}=0$ has equal roots, then (1)
a. $a d=b c$
b. $a b=c d$
c. $a d=\sqrt{b c}$
d. $a b=\sqrt{c d}$
4. The ratio of sum and the product of the roots of $7 x^{2}-12 x+18=0$ is (1)
a. $2: 3$
b. $3: 2$
c. $7: 18$
d. $7: 12$
5. If $\mathrm{y}=1$ is the common root of $l y^{2}+l y+3=0$ and $y^{2}+y+m=0$, then the value of ' $l m$ ' is (1)
a. 3
b. -4
c. 4
d. -3
6. Solve the quadratic equations by factorization method: $x^{2}-9=0$ (1)
7. Find the values of p for which the quadratic equation $4 x^{2}+p x+3=0$ has equal roots.
(1)
8. Form a quadratic equation whose roots are -3 and 4. (1)
9. If $x=\frac{-1}{2}$ is a solution of the quadratic equation $3 x^{2}+2 k x+3=0$, find the value of k. (1)
10. Write the discriminant of the given quadratic equation $x^{2}+x-12=0$ (1)
11. Find the values of k for which the given equation has real and equal roots: $(k+1) x^{2}-$ $2(k-1) x+1=0(2)$
12. Check, whether the quadratic equation have real roots and if so, then find the roots of equation. $6 x^{2}+x-2=0(2)$
13. Check whether the given equation is quadratic equation: $(x-3)(2 x+1)=x(x+5)(2)$
14. In a class test, the sum of Shefali's marks in Mathematics and English is 30 . Had she got 2 marks more in Mathematics and 3 marks less in English, the product of their marks would have been 210. Find her marks in the two subjects. (3)
15. If 2 is a root of the quadratic equation $3 x^{2}+p x-8=0$ and the quadratic equation $4 x^{2}-$ $2 \mathrm{px}+\mathrm{k}=0$ has equal roots, find k . (3)
16. If p, q, r and s are real numbers such that $p r=2(q+s)$, then show that at least one of the equations $x^{2}+p x+q=0$ and $x^{2}+r x+s=0$ has real roots. (3)
17. The speed of a boat in still water is $8 \mathrm{~km} / \mathrm{hr}$. It can go 15 km upstream and 22 km downstream in 5 hours. Find the speed of the stream. (3)
18. A train travelling at a uniform speed for 360 km ,would have taken 48 minutes less to travel the same distance if its speed were $5 \mathrm{~km} /$ hour more. Find the original speed of the train. (4)
19. Solve for x : $\sqrt{3} x^{2}+10 x+7 \sqrt{3}=0$ (4)
20. Solve for x : $2\left(\frac{x+2}{2 x-3}\right)-9\left(\frac{2 x-3}{x+2}\right)=3$; given that $\mathrm{x} \neq-2, \mathrm{x} \neq \frac{3}{2}$

CBSE Test Paper 01

Chapter 4 Quadratic Equation

Solution

1. b. 1 real root

Explanation: Given: $(x+1)^{2}-x^{2}=0$
$\Rightarrow x^{2}+1+2 x-x^{2}=0$
$\Rightarrow 2 x+1=0$
$\Rightarrow x=\frac{-1}{2}$
Therefore, $\left(x^{2}+1\right)^{2}-x^{2}=0$ is a linear polynomial and has one real root.
2. d. Real and Equal roots

Explanation: Comparing the given equation to the below equation
$\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
$\mathrm{a}=9, \mathrm{~b}=12, \mathrm{c}=4$
$D=b^{2}-4 a c$
D $=12^{2}-4 \times 9 \times 4$
D $=144-144$
D $=0$
If $b^{2}-4 a c=0$ then equation have equal and real roots.
3. a. $\mathrm{ad}=\mathrm{bc}$

Explanation If the equation $\left(a^{2}+b^{2}\right) x^{2}-2(a c+b d) x+c^{2}+d^{2}=0$ has equal roots, then

$$
\begin{aligned}
& b^{2}-4 a c=0 \\
& \Rightarrow[-2(a c+b d)]^{2}-4 \times\left(a^{2}+b^{2}\right) \times\left(c^{2}+d^{2}\right)=0 \\
& \Rightarrow 4\left[a^{2} c^{2}+b^{2} d^{2}+2 a b c d\right]-4\left[a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}\right]=0 \\
& \Rightarrow 4\left[a^{2} c^{2}+b^{2} d^{2}+2 a b c d-a^{2} c^{2}-a^{2} d^{2}-b^{2} c^{2}-b^{2} d^{2}\right]=0 \\
& \Rightarrow a^{2} d^{2}+b^{2} c^{2}-2 a b c d=0
\end{aligned}
$$

$$
(\mathrm{ad}-\mathrm{bc})^{2}=0
$$

$$
\Rightarrow(a d-b c)^{2}=0
$$

$$
\Rightarrow a d-b c=0
$$

$$
\Rightarrow a d=b c
$$

4. a. 2:3

Explanation: Ratio of sum and product of the roots of $7 x^{2}-12 x+18=0$ is

$$
\begin{aligned}
& \frac{\alpha+\beta}{\alpha \beta} \\
& \Rightarrow \\
& \Rightarrow \frac{-b}{c} \\
& \Rightarrow \frac{12}{18}=\frac{2}{3}=2: 3
\end{aligned}
$$

5. a. 3

Explanation: In quadratic equation $l y^{2}+l y+3=0$,

$$
\begin{aligned}
& l(1)^{2}+l(1)+3=0 \\
& \Rightarrow l+l+3=0 \\
& \Rightarrow 2 l+3=0 \\
& \Rightarrow l=\frac{-3}{2} \\
& \text { And }(1)^{2}+1+m=0 \\
& \Rightarrow 1+1+m=0 \\
& \Rightarrow 2+m=0 \\
& \Rightarrow m=-2 \\
& \therefore l m=\frac{-3}{2} \times(-2)=3
\end{aligned}
$$

6. We have,
$x^{2}-9=0$
$\Rightarrow(x-3)(x+3)=0$
$\Rightarrow x-3=0$ or, $x+3=0$
$\Rightarrow \mathrm{x}=3$ or, $\mathrm{x}=-3 \Rightarrow \mathrm{x}= \pm 3$
Thus, $x=3$ and $x=-3$ are roots of the given equation.
7. $4 x^{2}+p x+3=0$
$a=4, b=p$ and $c=3$
As the equation has equal roots
$\therefore D=0$
$D=b^{2}-4 a c=0$
or, $p^{2}-4 \times 4 \times 3=0$
or, $p^{2}-48=0$
or, $p^{2}=48$
or, $p= \pm 4 \sqrt{3}$
8. We have, $x=4$ and $x=-3$.

Then,
$x-4=0$ and $x+3=0$
$\Rightarrow(\mathrm{x}-4)(\mathrm{x}+3)=0$
$\Rightarrow \mathrm{x}^{2}+3 \mathrm{x}-4 \mathrm{x}-12=0$
$\Rightarrow \mathrm{x}^{2}-\mathrm{x}-12=0$
This is the required quadratic equation
9. we have, $3 x^{2}+2 k x+3=0$
put, $\mathrm{x}=\frac{-1}{2}$ (given)
$\Rightarrow 3\left(\frac{-1}{2}\right)^{2}+2 k\left(\frac{-1}{2}\right)+3=0$
$\Rightarrow 3\left(\frac{1}{4}\right)-\mathrm{k}+3=0$
$\Rightarrow \frac{3}{4}-\mathrm{k}+3=0$
$\Rightarrow k=3+\frac{3}{4}$
$\therefore k=\frac{15}{4}$
10. The given quadratic equation is $x^{2}+x-12=0$,
here $a=1, b=1, c=-12$
$\therefore D=b^{2}-4 a c=(1)^{2}-4((1)(-12)=1+48=49$
Hence, the discriminant is 49 .
11. We have, $(\mathrm{k}+1) \mathrm{x}^{2}-2(\mathrm{k}-1) \mathrm{x}+1=0$.
$\mathrm{a}=\mathrm{k}+1, \mathrm{~b}=-2(\mathrm{k}-1), \mathrm{c}=1$.
$\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=4(\mathrm{k}-1)^{2}-4(\mathrm{k}+1)=4\left(\mathrm{k}^{2}-3 \mathrm{k}\right)$
The given equation will have real and equal roots, if
$\mathrm{D}=0 \Rightarrow 4\left(\mathrm{k}^{2}-3 \mathrm{k}\right)=0 \Rightarrow \mathrm{k}^{2}-3 \mathrm{k}=0 \Rightarrow \mathrm{k}(\mathrm{k}-3)=0 \Rightarrow \mathrm{k}=0,3$
12. The given equation is $6 \mathrm{x}^{2}+\mathrm{x}-2=0$

Here, $\mathrm{a}=6, \mathrm{~b}=1$ and, $\mathrm{c}=-2$
$\therefore \mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=1-4 \times 6 \times-2=49>0$
So, the given equation has real roots, given by
$\alpha=\frac{-b+\sqrt{D}}{2 a}=\frac{-1+\sqrt{49}}{2 \times 6}=\frac{-1+7}{12}=\frac{6}{12}=\frac{1}{2}$ and, $\beta=\frac{-b-\sqrt{D}}{2 a}=\frac{-1-\sqrt{49}}{2 \times 6}=\frac{-1-7}{12}=\frac{-8}{12}=\frac{-2}{3}$
13. The given equation is $(x-3)(2 x+1)=x(x+5)$
$\Longrightarrow 2 \mathrm{x}^{2}+\mathrm{x}-6 \mathrm{x}-3=\mathrm{x}^{2}+5 \mathrm{x}$
$\Longrightarrow 2 \mathrm{x}^{2}-5 \mathrm{x}-3=\mathrm{x}^{2}+5 \mathrm{x}$
$\Longrightarrow \mathrm{x}^{2}-10 \mathrm{x}-3=0$
It is in the form of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0, a \neq 0$
\therefore the given equation is a quadratic equation.
14. Let Shefali's marks in Mathematics $=x$

Let Shefali's marks in English = 30-x
If, she had got 2 marks more in Mathematics, her marks would be $=\mathrm{x}+2$
If, she had got 3 marks less in English, her marks in English would be = 30-x-3=27

- x

According to given condition:
$\Rightarrow(\mathrm{x}+2)(27-\mathrm{x})=210$
$\Rightarrow 27 x-x^{2}+54-2 x=210$
$\Rightarrow x^{2}-25 x+156=0$
Comparing quadratic equation $x^{2}-25 x+156=0$ with general form
$a x^{2}+b x+c=0$,
We get $\mathrm{a}=1, \mathrm{~b}=-25$ and $\mathrm{c}=156$
Applying Quadratic Formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{25 \pm \sqrt{(-25)^{2}-4(1)(156)}}{2 \times 1}$
$\Rightarrow \frac{25 \pm \sqrt{625-624}}{2}$
$\Rightarrow x=\frac{25 \pm \sqrt{1}}{2}$
$\Rightarrow x=\frac{25+1}{2}, \frac{25-1}{2}$
$\Rightarrow \mathrm{x}=13,12$
Therefore, Shefali's marks in Mathematics $=13$ or 12
Shefali's marks in English $=30-x=30-13=17$
Or Shefali's marks in English $=30-x=30-12=18$
Therefore, her marks in Mathematics and English are $(13,17)$ or $(12,18)$.
15. Given, 2 is a root of the equation, $3 x^{2}+p x-8=0$

Putting $x=2$ in $3 x^{2}+p x-8=0$
$12+2 p-8=0$
or, $\mathrm{p}=-2$
Given, $4 x^{2}-2 p x+k=0$ has equal roots
$4 x^{2}+4 x+k=0$ has equal roots
$D=b^{2}-4 a c=0$
or, $(4)^{2}-4(4)(k)=0$
or, $16-16 \mathrm{k}=0$
or, $16 \mathrm{k}=16$
$\therefore \mathrm{k}=1$
16. Given quadratic equations are;
$x^{2}+p x+q=0$-(i)
and, $x^{2}+r x+s=0$
Also given ; pr = 2(q + s).
Let D_{1} and D_{2} be the discriminant of quadratic equations (i) and (ii) respectively.
Then,
$D_{1}=p^{2}-4 q$ and $D_{2}=r^{2}-4 s$
$\Rightarrow \mathrm{D}_{1}+\mathrm{D}_{2}=\mathrm{p}^{2}-4 \mathrm{q}+\mathrm{r}^{2}-4 \mathrm{~s}=\left(\mathrm{p}^{2}+\mathrm{r}^{2}\right)-4(\mathrm{q}+\mathrm{s})$
$\Rightarrow \quad D_{1}+D_{2}=p^{2}+r^{2}-4\left(\frac{p r}{2}\right)$ ([from equation (iii)]
$\Rightarrow \quad D_{1}+D_{2}=p^{2}+r^{2}-2 p r=(p-r)^{2} \geq 0\left[\because(p-r)^{2} \geq 0\right.$ for all real $\left.p, r\right]$
Now, Since sum of both $D_{2} \& D_{1}$ is greater than or equal to 0 . Hence, both can't be negative.
\Rightarrow At least one of D_{1} and D_{2} is greater than or equal to zero
Case 1. If $D_{1} \geq 0$, equation (i) has real roots.
Case 2.If $\mathrm{D}_{2} \geq 0$, equation (ii) has real roots.
Case 3. If $D_{1} \& D_{2}$ both ≥ 0, then equation (i) \& (ii) both have equal roots.
Clearly, from case 1,2 \& 3 at least one given quadratic equations has equal roots.
17. Given, speed of boat in still water $=8 \mathrm{Km} / \mathrm{hr}$. Let the speed of the stream be $\mathrm{x} \mathrm{km} / \mathrm{hr}$.

Then,
Speed of boat in downstream $=(8+x) \mathrm{km} / \mathrm{hr}$
Speed of boat in upstream $=(8-x) \mathrm{km} / \mathrm{hr}$

We know that time taken to cover 'd' km with speed 's' km/hr is $\frac{d}{s}$
So,Time taken by the boat to go 15 km upstream $=\frac{15}{8-x}$ hours.
$\&$, Time taken by the boat to 22 km downstream $=\frac{22}{8+x}$ hours.
It is given that the total time taken by boat to go 15 km upstream \& 22 km downstream is 5 hours.
$\therefore \frac{15}{8-x}+\frac{22}{8+x}=5$
$\Rightarrow \frac{15(8+x)+22(8-x)}{(8-x)(8+x)}=5$
$\Rightarrow \frac{120+15 x+176-22 x}{8^{2}-x^{2}}=5$
$\Rightarrow \frac{-7 x+296}{64-x^{2}}=5$
$\Rightarrow-7 \mathrm{x}+296=5\left(64-\mathrm{x}^{2}\right)$
$\Rightarrow-7 \mathrm{x}+296=320-5 \mathrm{x}^{2}$
$\Rightarrow 5 \mathrm{x}^{2}-7 \mathrm{x}+296-320=0$
$\Rightarrow 5 \mathrm{x}^{2}-7 \mathrm{x}-24=0$
$\Rightarrow 5 \mathrm{x}^{2}-15 \mathrm{x}+8 \mathrm{x}-24=0$
$\Rightarrow 5 \mathrm{x}(\mathrm{x}-3)+8(\mathrm{x}-3)=0$
$\Rightarrow(5 \mathrm{x}+8)(\mathrm{x}-3)=0$
$\Rightarrow \mathrm{x}-3=0[\because$ Speed can not be negative $\therefore 5 \mathrm{x}+8 \neq 0]$
$\Rightarrow \mathrm{x}=3$
Hence, the speed of the stream is $3 \mathrm{~km} / \mathrm{hr}$.
18. Given that a train travelling at a uniform speed for 360 km

Let the original speed of the train be $x \mathrm{~km} / \mathrm{hr}$
Time taken $=\frac{\text { Distance }}{\text { Speed }}=\frac{360}{x}$
Time taken at increased speed $=\frac{360}{x+5}$ hours.
According to the question
$\frac{360}{x}-\frac{360}{x+5}=\frac{48}{60}$
$360\left[\frac{1}{x}-\frac{1}{x+5}\right]=\frac{4}{5}$
or, $\frac{360(x+5-x)}{x^{2}+5 x}=\frac{4}{5}$
or, $\frac{1800}{x^{2}+5 x}=\frac{4}{5}$
$\Rightarrow \quad x^{2}+5 x-2250=0$
$\Rightarrow \quad x^{2}+(50-45) x-2250=0$
$\Rightarrow \quad x^{2}+50 x-45 x-2250=0$
$\Rightarrow \quad(x+50)(x-45)=0$
Either $\mathrm{x}=-50$ or $\mathrm{x}=45$
As speed cannot be negative
\therefore Original speed of train $=45 \mathrm{~km} / \mathrm{hr}$.
19. We have the following equation,
$\sqrt{3} x^{2}+10 x+7 \sqrt{3}=0$
Now factorise the equation,
$\sqrt{3} x^{2}+3 x+7 x+7 \sqrt{3}=0$
$\Rightarrow \sqrt{3} x(x+\sqrt{3})+7(x+\sqrt{3})=0$
$\Rightarrow \quad(x+\sqrt{3})(\sqrt{3} x+7)=0$
$\Rightarrow \quad x=-\sqrt{3}$ or $x=\frac{-7}{\sqrt{3}}$
If $x=-\frac{7}{\sqrt{3}}$ we need to rationalise it.
$\Rightarrow \quad x=-\frac{7 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}=-\frac{7 \sqrt{3}}{3}$
Therefore, Roots are $-\sqrt{3},-\frac{7 \sqrt{3}}{3}$
20. Let $\frac{x+2}{2 x-3}=\mathrm{y} \ldots$ (i)
\therefore Given equation becomes,
$2 \mathrm{y}-9 \times \frac{1}{y}=3$
$\Rightarrow 2 y^{2}-3 y-9=0$
$\Rightarrow 2 y^{2}-6 y+3 y-9=0$
$\Rightarrow 2 y(y-3)+3(y-3)=0$
$\Rightarrow(2 y+3)(y-3)=0$
$\Rightarrow y=-\frac{3}{2}$ or $\mathrm{y}=3$
Putting the value of y in equation (i), we get
$\Rightarrow \frac{x+2}{2 x-3}=-\frac{3}{2}$ or $\frac{x+2}{2 x-3}=3$
$\Rightarrow 2 x+4=-6 x+9$ or $\mathrm{x}+2=6 \mathrm{x}-9$
$\Rightarrow 8 \mathrm{x}=5$ or $-5 \mathrm{x}=-11$
$\Rightarrow \mathrm{x}=\frac{5}{8}$ or $\mathrm{x}=\frac{11}{5}$

