List is a collection which is ordered and changeable. Allows duplicate members.
Tuple is a collection which is ordered and unchangeable.Allows duplicate members.
Set is a collection which is unordered and unindexed. No duplicate members.
Dictionary is a collection which is ordered and changeable. No duplicate members.

Python Lists:
List
Lists are used to store multiple items in a single variable.

Lists are one of 4 built-in data types in Python used to store collections of data, the other 3 are Tuple, Set, and Dictionary, all with different qualities and usage.

Lists are created using square brackets:

Example
Create a List:

thislist = ["apple", "banana", "cherry"]
print(thislist)

List Items
List items are ordered, changeable, and allow duplicate values.

List items are indexed, the first item has index [0], the second item has index [1] etc.

Ordered
When we say that lists are ordered, it means that the items have a defined order, and that order will not change.

If you add new items to a list, the new items will be placed at the end of the list.

Changeable
The list is changeable, meaning that we can change, add, and remove items in a list after it has been created.

Allow Duplicates
Since lists are indexed, lists can have items with the same value:

Example
Lists allow duplicate values:

thislist = ["apple", "banana", "cherry", "apple", "cherry"]
print(thislist)

List Length
To determine how many items a list has, use the len() function:

Example
Print the number of items in the list:

thislist = ["apple", "banana", "cherry"]
print(len(thislist))

List Items - Data Types
List items can be of any data type:

Example
String, int and boolean data types:

list1 = ["apple", "banana", "cherry"]
list2 = [1, 5, 7, 9, 3]
list3 = [True, False, False]

A list can contain different data types:

Example
A list with strings, integers and boolean values:

list1 = ["abc", 34, True, 40, "male"]

type()
From Python's perspective, lists are defined as objects with the data type 'list':

<class 'list'>

Example
What is the data type of a list?

mylist = ["apple", "banana", "cherry"]

The list() Constructor
It is also possible to use the list() constructor when creating a new list.

Example
Using the list() constructor to make a List:

thislist = list(("apple", "banana", "cherry")) # note the double round-brackets
print(thislist)

output:
['apple', 'banana', 'cherry']

Python - Change List Items
Change Item Value
To change the value of a specific item, refer to the index number:

Example
Change the second item:
thislist = ["apple", "banana", "cherry"]
thislist[1] = "blackcurrant"
print(thislist)

output:
['apple', 'blackcurrant', 'cherry']

Change a Range of Item Values:
To change the value of items within a specific range, define a list with the new values, and refer to the range of index numbers where you want to insert the new values:

Example
Change the values "banana" and "cherry" with the values "blackcurrant" and "watermelon":

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "mango"]
thislist[1:3] = ["blackcurrant", "watermelon"]
print(thislist)

output:

['apple', 'blackcurrant', 'watermelon', 'orange', 'kiwi', 'mango']

If you insert more items than you replace, the new items will be inserted where you specified, and the remaining items will move accordingly:

Example
Change the second value by replacing it with two new values:

thislist = ["apple", "banana", "cherry"]
thislist[1:2] = ["blackcurrant", "watermelon"]
print(thislist)

output: ['apple', 'blackcurrant', 'watermelon', 'cherry']

Example
Change the second and third value by replacing it with one value:

thislist = ["apple", "banana", "cherry"]
thislist[1:3] = ["watermelon"]
print(thislist)

output:
['apple', 'watermelon']

Insert Items
To insert a new list item, without replacing any of the existing values, we can use the insert() method.

The insert() method inserts an item at the specified index:

Example
Insert "watermelon" as the third item:

thislist = ["apple", "banana", "cherry"]
thislist.insert(2, "watermelon")
print(thislist)

output:
['apple', 'banana', 'watermelon', 'cherry']

Append Items
To add an item to the end of the list, use the append() method:

Example
Using the append() method to append an item:

thislist = ["apple", "banana", "cherry"]
thislist.append("orange")
print(thislist)

Output:
['apple', 'banana', 'cherry', 'orange']

Insert Items:
To insert a list item at a specified index, use the insert() method.

The insert() method inserts an item at the specified index:

Example
Insert an item as the second position:

thislist = ["apple", "banana", "cherry"]
thislist.insert(1, "orange")
print(thislist)

output:
['apple', 'orange', 'banana', 'cherry']

Extend List
To append elements from another list to the current list, use the extend() method.

Example
Add the elements of tropical to thislist:

thislist = ["apple", "banana", "cherry"]
tropical = ["mango", "pineapple", "papaya"]
thislist.extend(tropical)
print(thislist)
output:
['apple', 'banana', 'cherry', 'mango', 'pineapple', 'papaya']

Using a While Loop
You can loop through the list items by using a while loop.

Use the len() function to determine the length of the list, then start at 0 and loop your way through the list items by refering to their indexes.

Remember to increase the index by 1 after each iteration.

Example
Print all items, using a while loop to go through all the index numbers

thislist = ["apple", "banana", "cherry"]
i = 0
while i <len(thislist):
print(thislist[i])
 i = i + 1

output:
apple
banana
cherry

Looping Using List Comprehension
List Comprehension offers the shortest syntax for looping through lists:

Example
A short hand for loop that will print all items in a list:

thislist = ["apple", "banana", "cherry"]
[print(x) for x in thislist]

Output:
apple
banana
cherry

Remove Specified Item
The remove() method removes the specified item.

Example
Remove "banana":

thislist = ["apple", "banana", "cherry"]
thislist.remove("banana")
print(thislist)

output:
['apple', 'cherry']

Remove Specified Index
The pop() method removes the specified index.

Example
Remove the second item:

thislist = ["apple", "banana", "cherry"]
thislist.pop(1)
print(thislist)

output:
['apple', 'cherry']

If you do not specify the index, the pop() method removes the last item.

Example
Remove the last item:

thislist = ["apple", "banana", "cherry"]
thislist.pop()
print(thislist)

output:
['apple', 'banana']

The del keyword also removes the specified index:

Example
Remove the first item:

thislist = ["apple", "banana", "cherry"]
delthislist[0]
print(thislist)

output:
['banana', 'cherry']

The del keyword can also delete the list completely.

Example
Delete the entire list:

thislist = ["apple", "banana", "cherry"]
delthislist

output:null

Clear the List
The clear() method empties the list.

The list still remains, but it has no content.

Example
Clear the list content:

thislist = ["apple", "banana", "cherry"]
thislist.clear()
print(thislist)

output:
[]

Loop Through a List
You can loop through the list items by using a for loop:

Example
Print all items in the list, one by one:

thislist = ["apple", "banana", "cherry"]
for x in thislist:
print(x)

output:
apple
banana
cherry

Loop Through the Index Numbers:

You can also loop through the list items by referring to their index number.

Use the range() and len() functions to create a suitable iterable.

Example
Print all items by referring to their index number:

thislist = ["apple", "banana", "cherry"]
for i in range(len(thislist)):
print(thislist[i])
output:
apple
banana
cherry

Using a While Loop
You can loop through the list items by using a while loop.

Use the len() function to determine the length of the list, then start at 0 and loop your way through the list items by referring to their indexes.

Remember to increase the index by 1 after each iteration.

Example
Print all items, using a while loop to go through all the index numbers

thislist = ["apple", "banana", "cherry"]
i = 0
while i <len(thislist):
print(thislist[i])
 i = i + 1

output:
apple
banana
cherry

Looping Using List Comprehension
List Comprehension offers the shortest syntax for looping through lists:

Example
A short hand for loop that will print all items in a list:

thislist = ["apple", "banana", "cherry"]
[print(x) for x in thislist]

Output:
apple
banana
cherry

Python - Sort Lists:
Sort List Alphanumerically
List objects have a sort() method that will sort the list alphanumerically, ascending, by default:

Example
Sort the list alphabetically:

thislist = ["orange", "mango", "kiwi", "pineapple", "banana"]
thislist.sort()
print(thislist)

Output:
['banana', 'kiwi', 'mango', 'orange', 'pineapple']

Example
Sort the list numerically:

thislist = [100, 50, 65, 82, 23]
thislist.sort()
print(thislist)

Output:
[23, 50, 65, 82, 100]

Sort Descending
To sort descending, use the keyword argument reverse = True:

Example
Sort the list descending:

thislist = ["orange", "mango", "kiwi", "pineapple", "banana"]
thislist.sort(reverse = True)
print(thislist)

output:
['pineapple', 'orange', 'mango', 'kiwi', 'banana']

Example
Sort the list descending:

thislist = [100, 50, 65, 82, 23]
thislist.sort(reverse = True)
print(thislist)

output:
[100, 82, 65, 50, 23]

Case Insensitive Sort
By default the sort() method is case sensitive, resulting in all capital letters being sorted before lower case letters:

Example
Case sensitive sorting can give an unexpected result:

thislist = ["banana", "Orange", "Kiwi", "cherry"]
thislist.sort()
print(thislist)

output:
['Kiwi', 'Orange', 'banana', 'cherry']

Luckily we can use built-in functions as key functions when sorting a list.

So if you want a case-insensitive sort function, use str.lower as a key function:

Example
Perform a case-insensitive sort of the list:

thislist = ["banana", "Orange", "Kiwi", "cherry"]
thislist.sort(key = str.lower)
print(thislist)

output:
['banana', 'cherry', 'Kiwi', 'Orange']

Reverse Order
What if you want to reverse the order of a list, regardless of the alphabet?

The reverse() method reverses the current sorting order of the elements.

Example
Reverse the order of the list items:

thislist = ["banana", "Orange", "Kiwi", "cherry"]
thislist.reverse()
print(thislist)

output:
['cherry', 'Kiwi', 'Orange', 'banana']
Python - Copy Lists:
Copy a List
You cannot copy a list simply by typing list2 = list1, because: list2 will only be a reference to list1, and changes made in list1 will automatically also be made in list2.

There are ways to make a copy, one way is to use the built-in List method copy().

Example
Make a copy of a list with the copy() method:

thislist = ["apple", "banana", "cherry"]
mylist = thislist.copy()
print(mylist)
output:
['apple', 'banana', 'cherry']

Another way to make a copy is to use the built-in method list().

Example
Make a copy of a list with the list() method:

thislist = ["apple", "banana", "cherry"]
mylist = list(thislist)
print(mylist)

Output:
['apple', 'banana', 'cherry']

Join Two Lists
There are several ways to join, or concatenate, two or more lists in Python.

One of the easiest ways are by using the + operator.

Example
Join two list:

list1 = ["a", "b", "c"]
list2 = [1, 2, 3]

list3 = list1 + list2
print(list3)

output:
['a', 'b', 'c', 1, 2, 3]

Another way to join two lists are by appending all the items from list2 into list1, one by one:

Example
Append list2 into list1:

list1 = ["a", "b" , "c"]
list2 = [1, 2, 3]

for x in list1:
 list1.append(x)

print(list1)

output:
['a', 'b', 'c', 1, 2, 3]

Example
Use the extend() method to add list2 at the end of list1:

list1 = ["a", "b" , "c"]
list2 = [1, 2, 3]

list1.extend(list2)
print(list1)

output:
[bookmark: _GoBack]['a', 'b', 'c', 1, 2, 3]
