Access Tuple Items
You can access tuple items by referring to the index number, inside square brackets:

Example
Print the second item in the tuple:

thistuple = ("apple", "banana", "cherry")
print(thistuple[1])
Note: The first item has index 0.
Output:
banana

Negative Indexing
Negative indexing means start from the end.

-1 refers to the last item, -2 refers to the second last item etc.

Example
Print the last item of the tuple:

thistuple = ("apple", "banana", "cherry")
print(thistuple[-1])

output:
cherry

Range of Indexes
You can specify a range of indexes by specifying where to start and where to end the range.

When specifying a range, the return value will be a new tuple with the specified items.

Example
Return the third, fourth, and fifth item:

Note: The search will start at index 2 (included) and end at index 5 (not included).

Remember that the first item has index 0.

By leaving out the start value, the range will start at the first item:

Example
This example returns the items from the beginning to, but NOT included, "kiwi":

thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango")
print(thistuple[:4])

output:
('apple', 'banana', 'cherry', 'orange')

By leaving out the end value, the range will go on to the end of the list:

Example
This example returns the items from "cherry" and to the end:

thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango")
print(thistuple[2:])

output:
('cherry', 'orange', 'kiwi', 'melon', 'mango')

Range of Negative Indexes
Specify negative indexes if you want to start the search from the end of the tuple:

Example
This example returns the items from index -4 (included) to index -1 (excluded)

thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango")
print(thistuple[-4:-1])

output:
('orange', 'kiwi', 'melon')

Check if Item Exists
To determine if a specified item is present in a tuple use the in keyword:

Example
Check if "apple" is present in the tuple:

thistuple = ("apple", "banana", "cherry")
if "apple" in thistuple:
 print("Yes, 'apple' is in the fruits tuple")
output:
Yes, 'apple' is in the fruits tuple

Python - Update Tuples
Tuples are unchangeable, meaning that you cannot change, add, or remove items once the tuple is created.

But there are some workarounds.

Change Tuple Values
Once a tuple is created, you cannot change its values. Tuples are unchangeable, or immutable as it also is called.

But there is a workaround. You can convert the tuple into a list, change the list, and convert the list back into a tuple.

Example
Convert the tuple into a list to be able to change it:

x = ("apple", "banana", "cherry")
y = list(x)
y[1] = "kiwi"
x = tuple(y)
print(x)

output:
('apple', 'kiwi', 'cherry')

Add Items
Once a tuple is created, you cannot add items to it.

Example
You cannot add items to a tuple:

thistuple = ("apple", "banana", "cherry")
thistuple.append("orange") # This will raise an error
print(thistuple)

output:
Traceback (most recent call last):
 File "D:/DEEPIKA/as.py", line 2, in <module>
 thistuple.append("orange") # This will raise an error
AttributeError: 'tuple' object has no attribute 'append'

Just like the workaround for changing a tuple, you can convert it into a list, add your item(s), and convert it back into a tuple.

Example
Convert the tuple into a list, add "orange", and convert it back into a tuple:

thistuple = ("apple", "banana", "cherry")
y = list(thistuple)
y.append("orange")
thistuple = tuple(y)

Tuple operations:
Transversing a tuple:
Accessing and processing each element on it
for <item> in <Tuple>:
 process each item here

for eg:
T=(“p”,”y”,”t”,”h”,”o”,”n”)
for a in T:
Print(T[a])
Output:
p
y
t
h
o
n

Joining tuples:
+operator it will join two tuples
Tuple1=(1,5,6)
Tuple2=(8,9,3)
Tuple1+Tuple2

Output:
(1, 5, 6, 8, 9, 3)

Repeating or Replicating Tuples:
Tuple1=(4,6,7)
Tuple1*3

Output:
(4,6,7,4,6,7,4,6,7)
Slicing the tuples:
Seq=T[start:stop]
Tup1=(10,45,78,65,43,32,78,89)
Seq=tp1[4:-3]
Output:
(43,32)

Seq=T[start:stop:step]
Tp1=(45,32,67,21,34,89,90,43)
Tp1[0:10:2]
Output:
(45,67,34,90)
Tp1=(45,32,67,21,34,89,90,43,55)
Tp1[2:10:3]
Output:
(67,89,55)
Tuple functions and methods

Len()
Max()
Min()
Index()
Count() All these functions are similar to list.

[bookmark: _GoBack]

Access Tuple Items

You can access tuple items by referring to the index number, inside

square brackets:

Example

Print the second item in the tuple:

thistuple = ("apple", "banana", "cherry")

print(thistuple[1])

Note: The first item has index 0.

O

utput:

banana

Negative

Indexing

Negative indexing means start from the end.

-

1 refers to the last item,

-

2 refers to the second last item etc.

Example

Print the last item of the tuple:

thistuple = ("apple", "banana", "cherry")

print(thistuple[

-

1])

output:

cherry

Range of Indexes

You can sp

ecify a range of indexes by specifying where to start and

where to end the range.

When specifying a range, the return value will be a new tuple with the

specified items.

Example

Access Tuple Items You can access tuple items by referring to the index number, inside square brackets: Example Print the second item in the tuple: thistuple = ("apple", "banana", "cherry") print(thistuple[1]) Note: The first item has index 0. O utput: banana Negative Indexing Negative indexing means start from the end. - 1 refers to the last item, - 2 refers to the second last item etc. Example Print the last item of the tuple: thistuple = ("apple", "banana", "cherry") print(thistuple[- 1]) output: cherry Range of Indexes You can sp ecify a range of indexes by specifying where to start and where to end the range. When specifying a range, the return value will be a new tuple with the specified items. Example

