SnS academy

a fingerprint school
Sincerity, Nobility and Service

APPLICATION OF INTEGRATION

1. Using integration find the area of the triangle formed by positive $x-$ axis and tangent and normal to the circle $x^{2}+y^{2}=4 a t(1, \sqrt{3})$
2. Using integration, prove that the curves $y^{2}=4 x$ and $x^{2}=4 y$ divide the area of the square bounded by $x=0, x=4, y=4$ and $y=0$ into three equal parts.
3. Using integration find the area of the region bounded by the line $x-y+2=0$, the curve $x=\sqrt{y}$ and y-axis.
4. Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$.
5. Using integration, find the area of the region enclosed between the two circles $x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$.
6. Using integration, find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$.
7. Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$.
8. Find the area of the region $\left\{(x, y): y^{2} \leq 6\right.$ axand $\left.x^{2}+y^{2} \leq 16 a^{2}\right\}$ using method of integration.
9. Find the area of the region $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$ using method of integration.
10. Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$
11. Find the area of the region bounded by the parabola $y^{2}=2 x$ and the line $x-y=4$.
12. Find the area of the region lying between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$.
13. Find the area of the region $\left\{(x, y): x^{2}+y^{2} \leq 4, x+y \geq 2\right\}$.
14. Using integration find the area of the region in the first quadrant enclosed by the x -axis, line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$.
15. Find the area of the triangular region whose sides have equations $y=2 x+1, y=3 x+1$ and $x=4$.
16. Sketch the graph of $y=|x+3|$ and evaluate the area under the curve $y=|x+3|$ above x -axis and between $\mathrm{x}=-6$ and $\mathrm{x}=0$.
17. Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$.
18. Find the area of the region in the first quadrant enclosed by the x -axis, the line $y=x$ and the circle $x^{2}+y^{2}=32$
19. Using integration, find the area of the region bounded by the triangle whose vertices are $(-1,2),(1,5)$ and $(3,4)$.
20. Using integration, find the area of the region bounded by the triangle whose vertices are $(2,0),(4,5)$ and $(6,3)$.
21. Using integration, find the area of the following region.

$$
\left\{(x, y):|x+2| \text { and } y \leq \sqrt{20-x^{2}}\right\}
$$

22. Using integration, find the area of the region

$$
\left\{(x, y): 25 x^{2}+9 y^{2} \leq 225 \text { and } 5 x+3 y \geq 15\right\} .
$$

23. Find the area of the region bounded by the following lines: $3 x-y-3=0$, $2 x+y-12=0, x-2 y-1=0$.
24. Find the area of the region bounded by the lines $5 x-2 y-10=0$, $x+y-9=0,2 x-5 y-4=0$
25. Using integration find the area of the region in the first quadrant enclosed by the x -axis, line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$
26. Using integration find the area of the region in the first quadrant enclosed by the x -axis, line $y=\sqrt{3} x$ and the circle $x^{2}+y^{2}=16$
