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Lecture 6 

PIC Programming in C 
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Code Space Limitations 
 

• On a general purpose PC, we don’t 

usually care about our program’s size 

• MB/GB/TB range for general purpose PCs 

– Ex: 1300 line .C file 50 KB  40 KB .hex file 

 

• 2MB max in PIC18’s Program ROM 

• For our PIC18F452  Only 32KB 

– See datasheet 

http://omega.uta.edu/~nbb0130/misc_files/PIC18FXX2%20Data%20Sheet.pdf
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Why C over ASM? 
 

• While Assembly Language produces a 

much smaller .HEX file than C… 

– More human-readable in C 

• Easier to write and less time consuming 

– C is easier to modify and update 

• Don’t care about absolute ROM locations 

– Access to many C function libraries 

– C code is portable and can be used on other 

microcontrollers with little or no modification 
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C Integer Data Types 

(Generic) 
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C Integer Data Types 

(C18 Compiler) 
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C Integer Data Types 

(XC8 Compiler) 
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Unsigned char 

(0 to 255) 

• PIC18 is 8-bit architecture, char type (8 bits) is the 

most natural choice 

• C compilers use signed char (-128 to +127) by 

default unless we put “unsigned” 

– char == signed char 



 

Unsigned char array 

(0 to 255) 
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Unsigned char array 

(0 to 255) 
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Unsigned char array 

(0 to 255) 
 

z = 0 

PORTB = ‘0’ (in code) 

PORTB = 0x30 = 48 (actual) 

 

PORTB = 0b 0011 0000 (pins) 10 



 

Unsigned char array 

(0 to 255) 

PINS 
Direction 

(TRISB) 

0 

0 

0 

0 

0 

0 

0 

0 

Pin Value 

(PORTB) 

0 

0 

1 

1 

0 

0 

0 

0 
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z = 0 

PORTB = ‘0’ (in code) 

PORTB = 0x30 = 48 (actual) 

 

PORTB = 0b 0011 0000 (pins) 



 

Unsigned char array 

(0 to 255) 
 

z = 1 

PORTB = ‘1’ (in code) 

PORTB = 0x31 = 49 (actual) 

 

PORTB = 0b 0011 0001 (pins) 12 



 

Unsigned char array 

(0 to 255) 
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z = 6 

PORTB = ‘A’ (in code) 

PORTB = 0x41 = 65 (actual) 

 

PORTB = 0b 0100 0001 (pins) 
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Signed char 

(-128 to +127) 

• Still 8-bit data type but MSB is sign value 
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Unsigned int 

(0 to 65,535) 

• PIC18 is 8-bit architecture, int type (16 bits) takes 

two bytes of RAM (only use when necessary) 

• C compilers use signed int (-32,768 to +32,767) by 

default unless we put “unsigned” 

– int == signed int 
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Larger Integer Types 

(short, long, short long) 



• Further info: Text and Video Explanation 17 
 

Floating-Point Data Types 
 

• Can store and calculate numbers with 

decimals (precision) 

• Always signed, can’t be unsigned 

2.5, 32.05898, -1.00232, .2600313, 51156.01, etc. 
 

 

https://www.youtube.com/watch?v=pQs_wx8eoQ8


• 1568 % 10 = 8 18 
 

Modulus 
 

• In C can use % to perform a modulus of 

two numbers (find the whole number 

remainder from a “repeated subtraction”) 

 
• 25 % 5 = 0 

• 25 % 7 = 4 

• 25 % 10 = 5 

• 428 % 100 = 28 
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 Casting to Prevent Data Loss 
 

? 

? 
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 Casting to Prevent Data Loss 
 

Time Delay 
 

• Want to have exact time differences or 

spacing between certain instructions 

 
• Three methods: 

– Using a simple loop (for/while) (crude) 

– Using PIC18 timer peripheral (later) 

– Built-in delay functions (reliable and accurate) 
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Two Factors for 

Delay Accuracy in C 

1. The crystal’s frequency (int. or ext.) 

– Duration of clock period for instruction cycle 

2. The compiler used for the C program 

– In ASM, we control the exact instructions 

– Different compilers produce different ASM code 



 

Time Delay Example 

 

 

FOSC = 10 MHz = 10,000,000 cycles/sec 

Each instruction takes 4 clock cycles (ticks) 

FCY = Instruction Cycle Frequency 

= 
10𝑀𝐻𝑀𝑀 

4 
= 2.5MHz = 2,500,000 Ins/sec 

 

TCY = Instruction Cycle Time 
= 1 / 2.5MHz = 0.0000004 sec per Ins 

= 0.0004 ms = 0.4 µs 

 

How many IC (instructions) fit into 1ms? 

1ms / 0.0004ms = 2,500 



 

 

 2,500 Instruction Cycles take place in 1ms 

 2,500 Instructions can complete in 1ms23 



 2,500 Instructions can complete in 1ms (generalizing since most instructions only take 1 Ins. Cycle)  

2.5MHz 

Instruction Cycle 
 

 

FOSC = Oscillator Frequency 

= 10 MHz = 10,000,000 cycles/sec 

Each instruction takes 4 clock cycles (ticks) 

 

FCY = Instruction Cycle Frequency 

FOSC 

= 
FOSC = 

10𝑀𝐻𝑀𝑀 = 2.5MHz = 2,500,000 Ins/sec 
4 4 

 

TCY = Instruction Cycle Time FCY 

= 
 1  
FCY 

= 
 1  

= 0.0000004 sec per Ins 

= 0.0004 ms = 0.4 µs 

 
How many IC (instructions) fit into 1ms? 

1ms / 0.0004ms = 2,500 

 2,500 Instruction Cycles take place in 1ms 24 
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Delay Functions in the 

XC8 Compiler 

1. Include the “xc.h” header file 

2. Define your crystal’s frequency 

• _XTAL_FREQ 

3. Can now use these 2 delay functions: 

–  delay_us(x); //unsigned long (0 - 4294967295) 

–  delay_ms(x); //unsigned long (0 - 4294967295) 
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PORT I/O Programming in C 
 

• Btye-Size Register Access 

– Labels still the same 

– PORTA – PORTD 

– TRISA – TRISD 

– INTCON 

• Bit-Addressable Register Access 

– PORTBbits.RB3 

– TRISCbits.RC7 or TRISCbits.TRISC7 

– INTCONbits.RBIE 
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PORT I/O Programming in C 
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PORTxbits.Rxy 
 

 
 
 
 
 

 



 

PORT I/O Programming in C 
 

 
 
 
 
 
 
 
 

 
30 



 

 
 

 
 

 

 
31 



 

.ASM Generated from C 
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Header Files 
 

• Remember that certain register/variable 

names are not native C keywords 

• They are PIC-specific 

– PORTB, TRISA, TMR0H, PRODL, etc. 

• Defined and mapped in header file 

– Using regular data types (char, int, struct, etc.) 

• Regular P18Fxxx.h (device) header files 
– C:\Program Files (x86)\Microchip\xc8\v1.20\include 
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Header Files 
 

• Other functional headers are available 

– adc.h 

– delays.h 

– i2c.h 

– pwm.h 

– timers.h 

– usart.h 

 

 
• Peripheral library Header Files 

– C:\Program Files (x86)\Microchip\xc8\v1.20\include\plib 34 

– C:\Program Files (x86)\Microchip\xc8\v1.20\sources\pic18\plib 



Shift left << 35 
 

Logic Operations in C 
 

• Bit-Wise Operators 
 

• Bit-Wise Shift Operators 

– Can shift right/left by X bits 

Shift right >> 
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Logic Operations in C 
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Binary (hex) to Decimal and 

ASCII Conversion 

• Sometimes we can’t handle multiple-digit 

decimals natively in C for display purposes 

• printf() is standard for generic C but 

requires more memory space than a 

PIC18 is willing to sacrifice 

• Best to build your own “custom” print or 

display functions in C 
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 Extract Single Decimal Digits 
 

• Want each digit of 253 (0b11111101, 0xFD) 

and convert to ASCII for displaying 
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 Extract Single Decimal Digits 
 

• Want each digit of 253 (0b11111101, 0xFD) 

and convert to ASCII for displaying 
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 Extract Single Decimal Digits 
Want each digit of 253 (0b11111101, 0xFD) and 
convert to ASCII for displaying 
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 Extract Single Decimal Digits 
 

• Want each digit of 253 (0b11111101, 0xFD) 

and convert to ASCII for displaying 
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#define Directive 
 

• Can associate labels with numbers or 

registers as a constant 
 
 
 

 

#define LED_OUTPUT PORTBbits.RB2 

#define MAX_USERS 50 
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Questions? 
 

• For PIC C Programming 

– Textbook Ch. 7 for more details 

• Start looking over Arithmetic/Logic 

– Textbook Ch. 5 
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