
2

Lecture 6

PIC Programming in C

3

Code Space Limitations

• On a general purpose PC, we don’t

usually care about our program’s size

• MB/GB/TB range for general purpose PCs

– Ex: 1300 line .C file 50 KB  40 KB .hex file

• 2MB max in PIC18’s Program ROM

• For our PIC18F452  Only 32KB

– See datasheet

http://omega.uta.edu/~nbb0130/misc_files/PIC18FXX2%20Data%20Sheet.pdf

4

Why C over ASM?

• While Assembly Language produces a

much smaller .HEX file than C…

– More human-readable in C

• Easier to write and less time consuming

– C is easier to modify and update

• Don’t care about absolute ROM locations

– Access to many C function libraries

– C code is portable and can be used on other

microcontrollers with little or no modification

5

C Integer Data Types

(Generic)

6

C Integer Data Types

(C18 Compiler)

6 7

C Integer Data Types

(XC8 Compiler)

8

Unsigned char

(0 to 255)

• PIC18 is 8-bit architecture, char type (8 bits) is the

most natural choice

• C compilers use signed char (-128 to +127) by

default unless we put “unsigned”

– char == signed char

Unsigned char array

(0 to 255)

8

Unsigned char array

(0 to 255)

9

Unsigned char array

(0 to 255)

z = 0

PORTB = ‘0’ (in code)

PORTB = 0x30 = 48 (actual)

PORTB = 0b 0011 0000 (pins) 10

Unsigned char array

(0 to 255)

PINS
Direction

(TRISB)

0

0

0

0

0

0

0

0

Pin Value

(PORTB)

0

0

1

1

0

0

0

0

11

z = 0

PORTB = ‘0’ (in code)

PORTB = 0x30 = 48 (actual)

PORTB = 0b 0011 0000 (pins)

Unsigned char array

(0 to 255)

z = 1

PORTB = ‘1’ (in code)

PORTB = 0x31 = 49 (actual)

PORTB = 0b 0011 0001 (pins) 12

Unsigned char array

(0 to 255)

13

z = 6

PORTB = ‘A’ (in code)

PORTB = 0x41 = 65 (actual)

PORTB = 0b 0100 0001 (pins)

14

Signed char

(-128 to +127)

• Still 8-bit data type but MSB is sign value

15

Unsigned int

(0 to 65,535)

• PIC18 is 8-bit architecture, int type (16 bits) takes

two bytes of RAM (only use when necessary)

• C compilers use signed int (-32,768 to +32,767) by

default unless we put “unsigned”

– int == signed int

16

Larger Integer Types

(short, long, short long)

• Further info: Text and Video Explanation 17

Floating-Point Data Types

• Can store and calculate numbers with

decimals (precision)

• Always signed, can’t be unsigned

2.5, 32.05898, -1.00232, .2600313, 51156.01, etc.

https://www.youtube.com/watch?v=pQs_wx8eoQ8

• 1568 % 10 = 8 18

Modulus

• In C can use % to perform a modulus of

two numbers (find the whole number

remainder from a “repeated subtraction”)

• 25 % 5 = 0

• 25 % 7 = 4

• 25 % 10 = 5

• 428 % 100 = 28

19

 Casting to Prevent Data Loss

?

?

20

 Casting to Prevent Data Loss

Time Delay

• Want to have exact time differences or

spacing between certain instructions

• Three methods:

– Using a simple loop (for/while) (crude)

– Using PIC18 timer peripheral (later)

– Built-in delay functions (reliable and accurate)

21

Two Factors for

Delay Accuracy in C

1. The crystal’s frequency (int. or ext.)

– Duration of clock period for instruction cycle

2. The compiler used for the C program

– In ASM, we control the exact instructions

– Different compilers produce different ASM code

Time Delay Example

FOSC = 10 MHz = 10,000,000 cycles/sec

Each instruction takes 4 clock cycles (ticks)

FCY = Instruction Cycle Frequency

=
10𝑀𝐻𝑀𝑀

4
= 2.5MHz = 2,500,000 Ins/sec

TCY = Instruction Cycle Time
= 1 / 2.5MHz = 0.0000004 sec per Ins

= 0.0004 ms = 0.4 µs

How many IC (instructions) fit into 1ms?

1ms / 0.0004ms = 2,500

 2,500 Instruction Cycles take place in 1ms

 2,500 Instructions can complete in 1ms23

 2,500 Instructions can complete in 1ms (generalizing since most instructions only take 1 Ins. Cycle)

2.5MHz

Instruction Cycle

FOSC = Oscillator Frequency

= 10 MHz = 10,000,000 cycles/sec

Each instruction takes 4 clock cycles (ticks)

FCY = Instruction Cycle Frequency

FOSC

=
FOSC =

10𝑀𝐻𝑀𝑀 = 2.5MHz = 2,500,000 Ins/sec
4 4

TCY = Instruction Cycle Time FCY

=
 1
FCY

=
 1

= 0.0000004 sec per Ins

= 0.0004 ms = 0.4 µs

How many IC (instructions) fit into 1ms?

1ms / 0.0004ms = 2,500

 2,500 Instruction Cycles take place in 1ms 24

25

Delay Functions in the

XC8 Compiler

1. Include the “xc.h” header file

2. Define your crystal’s frequency

• _XTAL_FREQ

3. Can now use these 2 delay functions:

– delay_us(x); //unsigned long (0 - 4294967295)

– delay_ms(x); //unsigned long (0 - 4294967295)

27

PORT I/O Programming in C

• Btye-Size Register Access

– Labels still the same

– PORTA – PORTD

– TRISA – TRISD

– INTCON

• Bit-Addressable Register Access

– PORTBbits.RB3

– TRISCbits.RC7 or TRISCbits.TRISC7

– INTCONbits.RBIE

28

PORT I/O Programming in C

29

PORTxbits.Rxy

PORT I/O Programming in C

30

31

.ASM Generated from C

32

Header Files

• Remember that certain register/variable

names are not native C keywords

• They are PIC-specific

– PORTB, TRISA, TMR0H, PRODL, etc.

• Defined and mapped in header file

– Using regular data types (char, int, struct, etc.)

• Regular P18Fxxx.h (device) header files
– C:\Program Files (x86)\Microchip\xc8\v1.20\include

33

Header Files

• Other functional headers are available

– adc.h

– delays.h

– i2c.h

– pwm.h

– timers.h

– usart.h

• Peripheral library Header Files

– C:\Program Files (x86)\Microchip\xc8\v1.20\include\plib 34

– C:\Program Files (x86)\Microchip\xc8\v1.20\sources\pic18\plib

Shift left << 35

Logic Operations in C

• Bit-Wise Operators

• Bit-Wise Shift Operators

– Can shift right/left by X bits

Shift right >>

36

Logic Operations in C

37

Binary (hex) to Decimal and

ASCII Conversion

• Sometimes we can’t handle multiple-digit

decimals natively in C for display purposes

• printf() is standard for generic C but

requires more memory space than a

PIC18 is willing to sacrifice

• Best to build your own “custom” print or

display functions in C

38

 Extract Single Decimal Digits

• Want each digit of 253 (0b11111101, 0xFD)

and convert to ASCII for displaying

39

 Extract Single Decimal Digits

• Want each digit of 253 (0b11111101, 0xFD)

and convert to ASCII for displaying

40

 Extract Single Decimal Digits
Want each digit of 253 (0b11111101, 0xFD) and
convert to ASCII for displaying

41

 Extract Single Decimal Digits

• Want each digit of 253 (0b11111101, 0xFD)

and convert to ASCII for displaying

42

#define Directive

• Can associate labels with numbers or

registers as a constant

#define LED_OUTPUT PORTBbits.RB2

#define MAX_USERS 50

43

Questions?

• For PIC C Programming

– Textbook Ch. 7 for more details

• Start looking over Arithmetic/Logic

– Textbook Ch. 5

	Code Space Limitations
	• For our PIC18F452  Only 32KB

	Why C over ASM?
	Unsigned char array (0 to 255)
	Unsigned char array (0 to 255) (1)
	Unsigned char array (0 to 255) (2)
	Unsigned char array (0 to 255) (3)
	Signed char (-128 to +127)
	Unsigned int (0 to 65,535)
	Larger Integer Types (short, long, short long)
	Modulus
	Two Factors for Delay Accuracy in C
	1. The crystal’s frequency (int. or ext.)
	2. The compiler used for the C program

	Time Delay Example
	Instruction Cycle
	Delay Functions in the XC8 Compiler
	PORT I/O Programming in C
	.ASM Generated from C
	Header Files
	Header Files (1)
	Logic Operations in C
	Logic Operations in C (1)
	Extract Single Decimal Digits
	Extract Single Decimal Digits (1)
	Extract Single Decimal Digits (2)
	Extract Single Decimal Digits (3)
	#define Directive
	Questions?

