


Delay Calculation for AVR:
In Assembly Language instructions, to create a time delay one must consider two
important factors.

1. The crystal frequency –
The frequency of the crystal oscillator connected to XTAL1 and XTAL2 is one
factor for calculating the time delay. The duration of the clock period for the

instruction cycle is a function of this crystal frequency.

2. The AVR design –
AVR microprocessors are able to execute an instruction in one cycle. There are
three ways of doing this.
3.

1. Use Harvard architecture to get the maximum amount of code
and data into the CPU.

2. Use RISC architecture features such as fixed-size
instructions.

3. Use pipelining to overlap fetching and execution of
instructions.

Pipelining :
In the early microprocessors, the CPU could either fetch or execute at a
given time. In other words, the CPU had to fetch an instruction from the
memory, then execute it then again fetch the next instruction, execute it,
and so on. Pipelining allows the CPU to fetch and execute the given
instruction at the same time.
We can use the pipeline to speed up execution of instructions. In
pipelines, the process of execution is split up into smaller steps that are all
executed in parallel. In the execution of instructions, we must make sure
that the sequence of instructions is kept intact and that there is no
different execution.

Instruction cycle time for the AVR :
It takes a certain amount of time for the CPU to execute an instruction.
This time is referred to as machine cycles. All the instructions in the AVR
are either 2-byte or 4-byte and hence most of the instructions take no
more than 2 machine cycles to execute (some instructions may take up 3
to 4 machine cycles to execute). In the AVR family, the duration of the
machine cycle depends upon the frequency of the oscillator connected to
the AVR system. In the AVR, one machine cycle consists of one oscillator
period, which means that with each oscillator clock, one machine cycle
passes. Therefore, to calculate the machine cycle for the AVR, we take
the inverse of the crystal frequency.
Example-1 :
For the given crystal frequencies, calculate the period of the instruction
cycles.
a) 8 MHz b) 16 MHz

Solution : a) instruction cycle = 1/ 8 MHz = 0.125 us (microsecond)

 b) instruction cycle = 1/ 16 MHz = 0.0625 us

Instruction cycles required by different instructions (considering 1
MHz as the crystal frequency) :

Instruction Instruction cycles Time to execute

LDI 1 1 us

DEC 1 1 us

OUT 1 1 us

ADD 1 1 us

NOP 1 1 us

JMP 3 3 us

CALL 4 4 us

BRNE 2/1 2 us if taken, 1 us if it fails

Example-2 :
Find the delay in us of the code snippet below if the crystal frequency is
10 MHz.
 Instruction Cycles

DELAY : LDI COUNT, 0XFF 0

Again : NOP 1

 NOP 1

 NOP 1

 DEC COUNT 1

 BRNE AGAIN 2/1

 RET 4

Solution : Time Delay = [1 +((1+ 1+ 1+ 1 + 2) x 255) + 4] x 0.1
us = 153.5 us

Instruction pipelining in a pic:

Pipelining is a technique where multiple instructions are

overlapped during execution. Pipeline is divided into stages and

these stages are connected with one another to form a pipe like

structure. Instructions enter from one end and exit from another end.

Pipelining increases the overall instruction throughput.

In a pipelined computer, instructions flow through the central

processing unit (CPU) in stages. For example, it might have one

stage for each step of the von Neumann cycle: Fetch the instruction,

fetch the operands, do the instruction, write the results. A pipelined

computer usually has "pipeline registers" after each stage. These

store information from the instruction and calculations so that

the logic gates of the next stage can do the next step.

This arrangement lets the CPU complete an instruction on each

clock cycle. It is common for even-numbered stages to operate on

one edge of the square-wave clock, while odd-numbered stages

operate on the other edge. This allows more CPU throughput than a

multicycle computer at a given clock rate, but may

increase latency due to the added overhead of the pipelining process

itself. Also, even though the electronic logic has a fixed maximum

speed, a pipelined computer can be made faster or slower by varying

the number of stages in the pipeline. With more stages, each stage

does less work, and so the stage has fewer delays from the logic

gates and could run at a higher clock rate.

A pipelined model of computer is often the most economical,

when cost is measured as logic gates per instruction per second. At

each instant, an instruction is in only one pipeline stage, and on

average, a pipeline stage is less costly than a multicycle computer.

Also, when made well, most of the pipelined computer's logic is in

use most of the time. In contrast, out of order computers usually

have large amounts of idle logic at any given instant. Similar

calculations usually show that a pipelined computer uses less energy

per instruction.

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/Latency_(engineering)
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Logic_gate

