

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

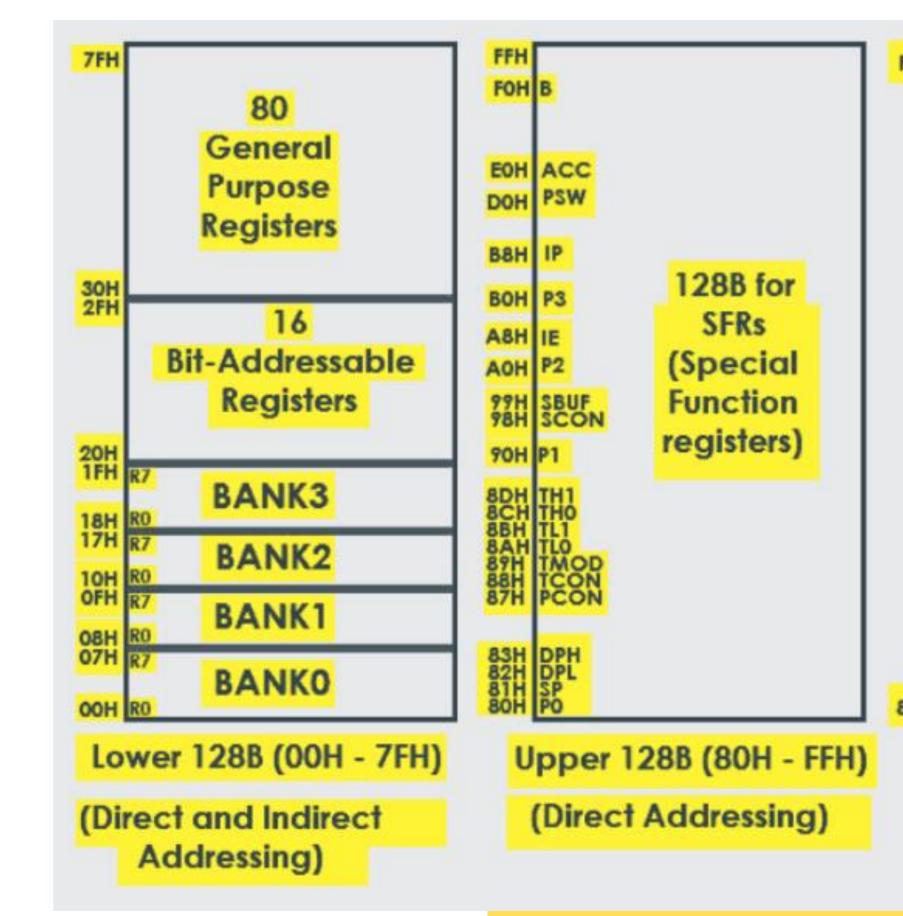
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

19ECT221 – MICROPROCESSORS AND MICROCONTROLLERS

II YEAR - IV SEM

UNIT 3–8051 MICROCONTROLLER

SPECIAL FUNCTION REGISTERS


The internal RAM or Data Memory of the 8051 Microcontroller is divided in to General Purpose Registers, Bit Addressable Registers, Register Banks and Special Function Registers or SFRs. The 8051 Microcontroller Special Function Registers are used to program and control different hardware peripherals like Timers, Serial Port, I/O Ports etc.

> By manipulating the 8051 Microcontroller Special Function Registers (SFRs), you can assess or change the operating mode of the 8051 Microcontroller.

DATA MEMORY(RAM) OF 8051

(Indirect Addressing)

CATEGORY OF SFRs

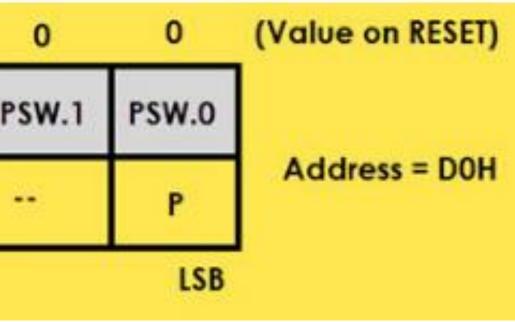
Name of the Register	Function	Internal RAM Address (HEX) E0H		
ACC	Accumulator			
В	B Register (for Arithmetic)	F0H		
DPH	Addressing External Memory	83H		
DPL	Addressing External Memory	82H		
IE	Interrupt Enable Control	A8H		
IP	Interrupt Priority	B8H		
P0	PORT 0 Latch	80H		
P1	PORT 1 Latch	90H		
P2	PORT 2 Latch	A0H		
P3	PORT 3 Latch	B0H		
PCON	Power Control	87H		
PSW	Program Status Word	D0H		
SCON	Serial Port Control	98H		
SBUF	Serial Port Data Buffer	99H		
SP	Stack Pointer	ONICS FUE 81H		
TMOD	Timer / Counter Mode Control	89H		
TCON	Timer / Counter Control	88H		
TL0	Timer 0 LOW Byte	8AH		
TH0	Timer 0 HIGH Byte	8CH		
TL1	Timer 1 LOW Byte	8BH		
TH1	Timer 1 HIGH Byte	8DH		

CATEGORY OF SFRs

>Math or CPU Registers: A and B Status Register: PSW (Program Status Word) > Pointer Registers: DPTR (Data Pointer – DPL, DPH) and SP (Stack Pointer) I/O Port Latches: P0 (Port 0), P1 (Port 1), P2 (Port 2) and P3 (Port 3) > Peripheral Control Registers: PCON, SCON, TCON, TMOD, IE and IP > Peripheral Data Registers: TL0, TH0, TL1, TH1 and **SBUF**

CATEGORY OF SFRs – Program Status Word

The PSW or Program Status Word Register is also called as Flag Register and is one of the important SFRs.


> The PSW Register consists of Flag Bits, which help the programmer in checking the condition of the result and also make decisions.

Flags are 1-bit storage elements that store and indicate the nature of the result that is generated by execution of certain instructions.

 \succ The following image shows the contents of the PSW Register.

	0	0	0	0	0	0	
	PSW.7	PSW.6	PSW.5	PSW.4	PSW.3	PSW.2	P
PSW	СҮ	AC	FO	RS1	RSO	ov	
	MSB						

CATEGORY OF SFRs – Program Status Word

	FLAG NAME			SYMBOL	BIT
U	Carry			C or CY	7
		AC	6		
		FO	5		
	n Bit 1	Bank Selectio	RS1	4	
	n Bit 1	RS0	3		
	Bank	RS0	RS1		
	Bank 0	0	0		
	Bank 1	1	0		
	Bank 2	0	1		
	Bank 3	1	1		
		Overflow	OV	2	
Ma	Reserved				1
Set to		Р	0		

DESCRIPTION

Ised in Arithmetic, Logic & Boolean Operations

Used in BCD Arithmetic

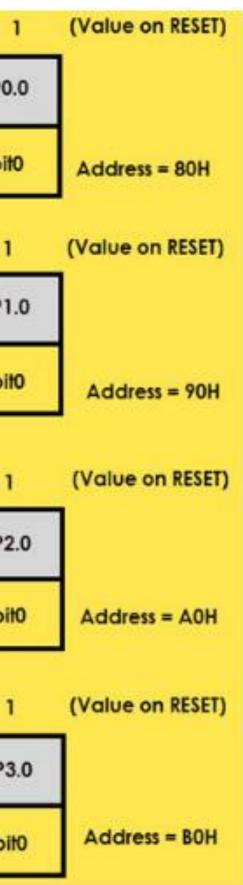
General Purpose User Flag

Used in Arithmetic Operations

ay be used as a General Purpose Flag

1 if A has odd # of 1's; otherwise Reset

CATEGORY OF SFRs –I/O Ports \succ The 8051 Microcontroller four Ports which can be used as Input and/or Output 2^{2772}


- \succ These four ports are P0, P1, P2 and P3. The addresses of the Port Registers are as follows: P0 – 80H, P1 – 90H, P2 – A0H and P2 – B0H. Each bit in these SFRs corresponds to one physical Pin in the 8051 Microcontroller. All these Port Registers are both Bit Addressable and Byte Addressable. Writing 1 or 0 on a Port Register Bit will reflect as an appropriate voltage (5V and 0V) on the corresponding Pin.
- \blacktriangleright If a Port Bit is SET (declared as 1), the corresponding Port Pin will be configured as Input and similarly if a Port Bit is CLEARED (declared as 0), the corresponding Port Pin is configured as Output. Upon reset, all the Port Bits are SET (1) and hence, all the Port Pins are configured as Inputs.

CATEGORY OF SFRs –I/O Ports

	1	1	1	1	1	1	1	1
	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	PO
PO	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit
	1	1	1	1	1	1	1	1
	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1
P1	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit
	1	1	1	1	1	1	1	1
	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2
P2	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bi
	1	1	1	1	1	1	1	1
	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3
P3	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bi

19ITT204- Interfacing Requ<mark>irements /M.BHUVANESWARI/ECE/SNSCT</mark>

References

https://www.electronicshub.org/8051-microcontroller-special-function-registers/

https://rcet.org.in/uploads/academics/rohini_38214305809.pdf

Ramesh S.Gaonkar," Microprocessor – Architecture, Programming and Applications with the 8085", Penram International Publisher,7th Ed., 2016

19ITT204-8086 Addressing modes /M.BHUVANESWARI/ECE/SNSCT

Thank You

10/11